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Abstract

Robust schedules are important to industry for reasons, ulti-
mately, of profit and maintaining competitiveness. We pro-
pose that sensitivity analysis can be used to improve sched-
ule robustness. We illustrate this using two case studies, the
classic bridge building problem and from real life, a semi-
conductor manufacturing problem. In both cases, we gener-
ate a predictive schedule with the performance objective of
minimising makespan. Disruptions to the schedule are mod-
elled respectively as duration extensions and release time de-
lays. From a senstivity graph, we can formulate a hypothe-
sis around how to introduce float into the original schedule
so that it becomes more robust to the same changes with a
possible, though not necessarily obligatory, extention to the
manufacturing time.

Introduction

Finding robust schedules is a very hard problem. Not only
do we have to find a schedule, but we also have to ensure that
it does not break down or does not break down too much
when disruptions occur. For constraint-based scheduling,
one reference approach that can be used is the search for
so-called super solutions (Hebrard, Hnich, and Walsh 2004)
or weighted super solutions (Holland and O’Sullivan 2005).
That is, we search for a schedule that is guaranteed to be
repairable with a limited number of changes, if a disruption
occurs without extending the makespan. Unfortunately, for
all but small unrealistic problems, finding a super solution
takes a prohibitive amount of time.

An alternative to finding a super solution is to find an op-
timal schedule, in terms of a desired objective, and to use
the results of sensitivity analysis to determine and improve
the schedule robustness. Sensitivity analysis is the study of
the effect of uncertainty in model parameters and input vari-
ables on the output of a given model (Saltelli, Chan, and
Scott 2000). Since a predictive schedule is a model for ob-
taining a performance objective, and because of unpredicted
events, we can use sensitivity analysis to determine the im-
pact of uncertainties on the predictive schedule and perhaps
make the schedule more robust to those uncertainties.! This

'We say that a schedule is robust for a given objective under
a certain rescheduling policy and for a given class of disruptions,
if the objective value does not deteriorate when one of these dis-

is not too far removed from the method employed in su-
per solutions. With them, at each node of the search tree
a value is assigned to a variable. The system then searches
also for a solution in which that variable is perturbed by ex-
cluding that possible value. Our form of sensitivity analy-
sis will make sequential perturbations to variables (durations
and start times) of the schedule.

Note that sensitivity analysis in the scheduling context
has been studied by several authors. For an overview see
Hall and Posner (2004). However, in terms of robustness,
these investigations deal with either bounding the change
in performance objective for a given change in schedule
inputs or with selecting a schedule from a set of opti-
mal schedules, depending on schedule variable changes
(Trystram, Penz, and Rapine 2000; Kolen et al. 1994;
Jia and lerapetritou 2004). Additionally, these sensitivity
analysis investigations are tied to specific schedule scenar-
ios. We propose to improve the robustness of a predictive
schedule based on sensitivity analysis and, while recognis-
ing possible objective deterioration, to do so in a way that
can be applied generically.

In this paper we present ongoing work in which we in-
vestigate using sensitivity analysis, via tornado graphs, to
both measure and improve schedule robustness. Our conjec-
ture is that we can use the information the sensitivity analy-
sis provides to make small changes, such as inserting slack
or swapping tasks, to make the schedule more robust. We
propose an algorithm which takes the results of a sensitiv-
ity analysis to generate a new more robust schedule. We
illustrate our premise using a case study in which we limit
ourselves to “one-way” analysis; that is, investigating the
effects of varying one parameter at a time. Multi-parameter
analysis is left for future work.

The remainder of this paper is organised as follows. The
next section introduces tornado graphs, the medium used to
illustrate schedule robustness. This is followed by the dis-
cussion of an algorithm that uses the information provided
by the sensitivity analysis (and demonstrated by the tornado
graphs) to improve schedule robustness. This algorithm is
then applied in a case study, involving real data from a semi-
conductor manufacturer. Finally, we discuss some of the
research questions that this approach poses, and present a

ruptions happens and the rescheduling policy is applied to rectify
it.



preliminary investigation into some of the answers to those
questions.

Tornado Graphs

Communicating schedule robustness measures to industry
has been a problem. Kempf et al. (2000) state that “a clear
understanding of how the quality of a schedule is assessed is
critical to the successful implementation of scheduling sys-
tems in real-world manufacturing environments.” Addition-
ally, experience with scheduling in the real world indicates
that graphics are highly useful in communicating with in-
dustry (van der Krogt, Little, and Simonis 2009). For this
reason, we have used fornado graphs to illustrate schedule
robustness. A tornado graph is a type of bar chart (Eschen-
bach 1992), consisting of horizontal bars to the left and right
of a central vertical line, as shown in Figure 1. Each bar on
the left represents the amount of change in a specific model
variable or parameter being investigated. Each bar to the
right illustrates the effect on the model outcome of the cor-
responding change in the variable or parameter. The bars are
ordered from top to bottom in decreasing magnitude of ef-
fect which gives the chart its characteristic “tornado” shape.
Such graphs provide a richer description of the robustness
of a schedule than a single number. At the same time, we
can still obtain a single measure of robustness, if needed, by
computing the sum of the lengths of the right-hand side bars.

To illustrate the use of these tornado graphs, we use the
classic Bridge Building problem. This problem was intro-
duced by (Bartusch 1983) and later accepted as a standard
benchmark in the Constraint Programming community. A
full description can be found in (van Hentenryck 1989). The
problem involves the construction of a five segment bridge,
in a minimum amount of time. To do this, we have to sched-
ule 43 activities, 34 of which are allocated to the 7 avail-
able resources while the rest require no resource. The ac-
tivities include excavations, making foundation piles, form-
work, masonry work, positioning of the bearers, etc. If the
contract for building the bridge includes a clause on when it
should open, the builders would be very interested to know
what the effect of a delay in one of the activities is on the
overall project.

For example, consider a single activity a taking 10%
more time than expected. We can study the impact of such
an event by rescheduling the remainder of the activities
(i.e. those that are scheduled to start at the same time or later
as the offending task a) taking into account the longer du-
ration for a, and examing the differences with the baseline
schedule in which none of the activities has a longer than ex-
pected duration. Part of the tornado graph that presents the
results of this analysis for each of the activities is given in
Figure 1. On the left-hand side, we see the amount of time
that each activity is extended by, on the right hand-side, we
see the effect on the overall schedule. For example, we can
see that when the task “pstnBrr5” takes 12 time units more
than expected (10% of its duration of 120), the knock-on
effect of this is that the schedule now completes 32 time
units later. On the other hand, the schedule can absorb a 15
time unit increase to the “fill1” task (near the bottom of the
graph) without any effect on the makespan. Since the tasks

are ordered from largest to smallest impact, it is immedi-
ately clear which tasks are critical to the on-time completion
of the bridge.
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Figure 1: A tornado graph with its robustness measure

For the purposes of this paper, we extend tornado graphs
to include a single numerical measure of robustness as the
total area of schedule breakage; i.e., the total area of the bars
on the right side of the graph. This allows for a numerical
comparison of schedule robustness between schedules; in
this case the number is 156.

Improving Schedule Robustness

The results presented in the previous paragraph are based
on the default solution that Ilog OPL Studio returns when
we solve the bridge problem. We know it has an optimal
makespan, but the question is: can we improve upon the
robustness of this schedule? It turns out that, in this case,
we can. For example, one alternative schedule that has the
same overall makespan has the robustness profile shown in
Figure 2. As one can easily confirm, the impact of the de-
lays is much less in this schedule than in the previous one.
The reason for this is that the slack that is naturally avail-
able in the schedule is distributed differently. In the first
schedule, the slack is concentrated in a few places, whereas
in the second one, the slack is more distributed across the
schedule and located around the worst offending activities.
This observation gave rise to the following hypothesis: by
identifying which activities are critical (i.e. cause the biggest
impacts) and changing the schedule to include more slack
around those activities, we can improve the robustness of
schedules.

To investigate the hypothesis, we designed the following
heuristic, as sketched in Algorithm 1. First, we obtain a base
line schedule for the given set of tasks. Then, we simulate
a delay for all tasks sequentially and identify, if any, which
task a causes most impact on the objective of the schedule. If
the impact is less than the given threshold, stop. Otherwise,
we add as much float to task a as we can without impacting
on the objective, with a maximum of x. Finally, we schedule
all the tasks again and perform another sensitivity analysis.
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Figure 2: The tornado graph of an improved schedule

We used this heuristic in two different settings: that of the
bridge building problem, and also on a real-world applica-
tion: scheduling one of the steps in semiconductor manu-
facturing. We will first show the results on the real-world
data, before we examine the bridge-building problem again
in more detail.

Case Study : Semiconductor Manufacturing

We now discuss a case study, based on real-world data
from a phase of semiconductor production. This phase
is re-entrant as product leaves and returns to the same
area, perhaps several times, during their manufacturing cy-
cle (van der Krogt 2007). A constraint model built in ILOG
OPL Scheduler was used to examine the robustness in terms
of the makespan. Constraint-based scheduling is used both
to create the baseline schedule and to reschedule, based on
a single disruption (duration or start time). Tasks that had
already been executed or were executing at the time of the
disruption were fixed at their original times.

There are several variables to this scheduling problem:
multiple machines, many possible operations, variable setup
times and the possibility of doing two products on a single
machine if they are undergoing the same operation. Addi-
tionally, there is an inter-operation duration, due to the re-
entrant nature of the process. The inter-operation duration
is dependent on the previous operation the product under-
went and its next operation when it returns to the area. The
inter-operation duration determines when the product enters
the buffer for its next operation and is a major source of un-
certainty. Thus, experiments were done using buffer entry
delays as our modelled schedule disruptions and we exam-
ine the robustness in terms of makespan.

The Scheduling Algorithm

The plant runs around the clock. We arbitrarily used a 100-
minute scheduling horizon with the primary objective of
minimising makespan while at the same time maximising
throughput by pairing tasks whenever possible. The follow-
ing constraints were present:

Algorithm 1: Improve schedule through sensitivity
analysis

input : T = {t1,...,t,} aset of tasks
7 a threshold for stopping
S a scheduling algorithm
‘R a rescheduling algorithm
A a function returning the change in objective
value between two schedules
output: an improved schedule
begin
while true do
schedule < S(T)
foreach t; € T do
let ¢/ be the task t; delayed
schedule’ + R(schedule, T\ {t;} U{t.})
effect|t;] < A(schedule, schedule’)

let a < argmax,, . effect[t;]
if effect[a] < 7 then
| return schedule
else
L let o’ be task a with added slack

T+ T\{a}U{d}

1. The task has to finish within the scheduling horizon.
2. No task start time can begin before the wafer entry time

in the buffer.

3. No task start time can begin before the previous opera-

tions on the wafer are completed.

4. No task start time can begin before the required setup time

between operations.

5. Tasks paired on the same machine have to start at the same

time.

6. No two tasks can be scheduled on the same port at the

same time.

7. Tasks can be paired on the same machine if they have the

same operation and arrive in the buffer within 30 minutes
of each other.

Rescheduling with the original algorithm allowed tasks that
had not yet begun execution to be swapped around to other
machines. This was also considered realistic in that the pro-
cess of loading a wafer on a machine is automated, so there
is no issue with a task previously scheduled on one machine
being swapped to another machine as long as the required
setup time is accounted for in the schedule.

Sensitivity Analysis

Buffer entry delays of 5 and 10 minutes were modelled se-
quentially for each task. All tasks had the same likely mag-
nitude of delay. This magnitude was large enough to cause
some disruption to the schedule and in line with typical pro-
cess durations (13-40 minutes) and setup times (1-9 min-
utes). The scheduled tasks were delayed, one at a time, and
the rescheduling algorithm executed to determine the effect
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Figure 3: Tornado Graph for 5-Minute Delay
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Figure 4: Tornado Graph for 10-Minute Delay

of the delay on the original predictive makespan of 99 min-
utes. A tornado graph was then created for each experiment.

Figures 3 and 4 are the tornado graphs showing the effects
of a 5 and 10-minute delay in buffer arrival time for each
of the tasks. Note that the figures have been truncated for
clarity to show all tasks whose delay breaks the makespan
plus some of those that do not. The rest of the tasks, which
are not shown, do not break the makespan. Figure 3 shows
that the predictive schedule is more robust to a 5-minute de-
lay than a 10-minute delay as shown in Figure 4, as might
be expected. Further the task with the biggest impact on
makespan changed between 5 and 10 minutes.

Improving Robustness

The tornado graphs clearly illustrate the tasks whose
buffer delays cause a disruption to the predictive schedule
makespan. They also show which tasks have the bigger ef-
fect and the relative change in objective to a given delay.
Consider again Figure 3. We used this figure to determine
which tasks to investigate to see if we could improve the ro-
bustness to 5-minute delays in our original predictive sched-
ule. We started with Task 9 as this task caused the maximum
disruption of 2 minutes beyond our optimal makespan. Fig-
ure 5 shows this graph for the improved schedule. The new
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Figure 5: Tornado Graph for 5-Minute Delay, Improved
Schedule

predictive schedule is perfectly robust to any one 5-minute
delay and the makespan of 99 minutes remained the same
as before so we improved our robustness without any sac-
rifice in optimality. The new schedule also, inadvertently,
fixed the 1-minute disruption to the makespan caused by a
5-minute delay to Task 1. (Note that, as with the other tor-
nado graphs, the other tasks not shown did not impact the
schedule makespan when each was delayed by the specified
amount.) We can consider this a "super solution" schedule
where any delay of up to 5 minutes can be handled by having
an alternative schedule with zero impact on the objective.

The same type of analysis was done for the 10-minute de-
lay tornado graph shown in Figure 4. Based on that analysis,
adding 10 minutes of slack to Task 10, greatly improved the
original predictive schedule to 10-minute delays. Executing
the rescheduling simulation again shows that the new sched-
ule is robust to a 10-minute delay to all tasks except tasks 1,
11 and 17. Figure 6 is the tornado graph for 10-minute de-
lays applied to the improved predictive schedule. Note that if
we allowed the makespan of the improved predictive sched-
ule to increase to 100 minutes from the original makespan
of 99 minutes, we would have a perfectly robust schedule
in terms of a 10-minute delay to any one task and a super
solution. This would be a small trade-off in optimality for
robustness in the face of delay.

Discussion

Having shown that the method is viable in a real-world set-
ting, we now return to the bridge building example, to dis-
cuss some of the research questions that our approach poses.
Firstly, we wanted to know if it is always best to allocate
additional slack to the activity with the largest impact. Sec-
ondly, we were interested to see what happens if we allocate
slack to the top n offenders, rather than a single one.

To investigate the first question, we took the 14 activities
that showed an impact on the scheduling horizon in Figure 2.
For each of those activities, we then formulated a schedul-
ing problem in which that activity had its duration increased
by 10%, solved it to optimality and did a sensitivity analy-
sis. The problems that we generated can be considered the
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Figure 6: Tornado Graph for 10-Minute Delay, Improved
Schedule

Table 2: Sensitivity analysis when allocating slack to multi-
ple activities

[ n [[ Makespan | Robustness | # breaks | max break |
1 1060 24 2 12
2 1076 24 2 12
3 1088 12 1 12
4 1088 12 1 12
5 1096 12 1 12
6 1100 10 1 10
7 1100 10 1 10

Table 3: Sensitivity analysis when allocating slack to multi-
ple activities, dynamically

| steps || Makespan [ Robustness [ # breaks [ max break

1 1060 24 2 12
2 1072 12 1 12
Table 1: Sensitivity analysis for each possible activity 3 1072 12 1 12
| break [ Makespan | Robustness | # breaks | max break | 4 1072 12 1 12
20 1060 24 2 12 5 1084 0 0 0
16 1056 68 6 20
12 1052 24 3 12
12 1040 108 14 20 to 144. Finally, we note that in general, allowing for a larger
8 1048 68 6 20 increase in makespan will lead to the best robustness mea-
8 1048 68 6 20 sures, demonstrating the trade-off between optimality and
8 1048 60 5 20 robustness.
S 1048 34 7 20 In response to the second question, we refer the reader to
S 1040 08 11 20 Tables 2 and 3. These show what happens when a sched-
4 1040 132 15 20 ule is created that includes slack for multiple activities. For
1 1040 144 17 20 the first table, we followed the same strategy as previously,
i 1040 0% 11 20 except that we increased the duration of not one, but n activ-
1 1040 144 17 20 ities (the n worst ones, 1 < n < 4) when we generated the
T 1040 08 1 20 new schedule. As one can see, the robustness of the solution

most optimal schedule in which there is enough slack for
that one activity to fully absorb its possible delay. (Notice
that this means that the schedule may have to grow in length
in order to fully provide the slack. This is different from
our case study, where the makespan was kept fixed.) The
results of this analysis can be found in Table 1. The table
lists the size of the original break (i.e. the amount by which
the makespan increases when this activity is delayed in the
baseline schedule), followed by the results of the sensitivity
analysis for the schedule in which that activity has additional
slack. Indeed, this shows that the most robust schedule is the
one in which the worst offender was repaired (only two ac-
tivities that make the makespan increase, for a total of 24
units). However, there are several more good alternatives.
The third row, for example shows an alternative that is only
slightly worse (3 activities that break the makespan, with a
total of 24 units of increase), but which is a lot better in terms
of its makespan. Clearly, it is not always a clear-cut answer,
and this poses an interesting question for future work.

We can also observe that assigning slack in the wrong
places can be detrimental. For example, consider the second
last row, in which the robustness measure increases from 108

slowly improves, but not greatly, and at a large expense in
optimality.

An alternative approach is to look at the sensitivity anal-
ysis at each step, and include slack for the worst offender in
that case. The reasoning behind this is that when we alter the
schedule to be more robust for the worst offender, the new
worst offender is not necessarily the second-worst offender
in the original analysis. Therefore, we expect this dynamic
approach to be better than the previous, static, one. The re-
sults of this experiments are shown in Table 3. As one can
see, after five steps we achieve a solution that is completely
robust against any delays. Indeed, the solutions appear to be
of a better quality than in the static approach, as the same
robustness is achieved with a smaller decrease in optimality.

Conclusions and Future Work

In this paper, we introduced the idea of using sensitivity
analysis to point us towards certain scheduling parameters
which we can use to to build scheduling algorithms which
introduce robustness in a trade-off with other objectives. A
case study demonstrated that such an approach could be a
viable alternative to producing robust schedules via other,
more expensive ways such as the super solutions framework.
Even a simple heuristic as presented here already improves



the robustness, and we hope to improve upon this with more
complex heuristics.

We also introduced tornado graphs as a tool to communi-
cate robustness to users. Most measures of robustness in the
literature give a single number that tries to encompass the
trade-off between schedule objective optimality and sched-
ule robustness. For example, Leon, Wu, and Storer (1994)
use a weighted linear combination of expected makespan
and expected makespan delay to measure schedule robust-
ness. Whereas, Carrillo and Daniels (1997) develop a statis-
tical value, beta-robustness, that is the probability of a given
schedule meeting a given minimum performance level. Ad-
ditionally, Surico et al. (2006) develop a risk factor based on
statistics for waiting times and maximum delays. Such sin-
gle values indicating the robustness of each schedule com-
municates if one schedule is more robust than another but
says little about how or what the schedule is sensitive to. We
argue that the tornado graphs give a much more understand-
able picture for the users.

Our next step is to develop the algorithms further, through
applying the technique to a variety of other scheduling prob-
lems. We already discussed some of the research questions
open to us in the previous section. Furthermore, we want to
apply statistical knowledge about the likelihood and magni-
tude of possible disruptions to the sensitivity analysis (where
available). That is, to analyse only those disruptions that are
likely to happen within a given confidence interval. Finally,
the analysis could also be extended to a multi-way sensitivity
analysis to model more than one type of disruption occurring
within the schedule horizon.
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