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Abstract

This paper presents a heuristic algorithm for solving a job-
shop scheduling problem with sequence dependent setup
times (SDST-JSSP). This strategy, known as Iterative Flat-
tening Search (IFS), iteratively applies two steps: (1) a
relaxation-step, in which a subset of scheduling decisions
are randomly retracted from the current solution; and (2) a
solving-step, in which a new solution is incrementally re-
computed from this partial schedule. The algorithm relies
on a core constraint-based search procedure, which gener-
ates consistent orderings of activities that require the same
resource by incrementally imposing precedence constraints
on a temporally feasible solution. Key to the effectiveness of
the search procedure is a conflict sampling method biased to-
ward selection of the most critical conflicts. The efficacy of
the overall heuristic optimization algorithm is demonstrated
empirically on a set of well known SDST-JSSP benchmarks.

Introduction
This paper describes an iterative improvement approach to
solve job-shop scheduling problems with ready times, dead-
lines, and sequence dependent setup times (SDST-JSSP).
Over the last ten years, there has been an increasing interest
in solving scheduling problems with setup times (Allahverdi
and Soroush 2008; Allahverdi et al. 2008). This fact stems
mainly from the observation that in various real-word in-
dustry or service environments there are tremendous savings
when setup times are explicitly considered in scheduling de-
cisions.

In this paper we focus on one family of techniques re-
ferred to as Iterative Flattening Search (IFS). IFS was first
introduced in (Cesta, Oddi, and Smith 2000) as a scalable
procedure for solving multi-capacity scheduling problems.
IFS is an iterative improvement heuristic designed to mini-
mize schedule makespan. Given an initial solution, IFS iter-
atively applies two-steps: (1) a subset of solving decisions
are randomly retracted from a current solution (relaxation-
step); (2) a new solution is then incrementally recomputed
(flattening-step). The original IFS procedure was extended
in two subsequent works (Michel and Van Hentenryck 2004;
Godard, Laborie, and Nuitjen 2005) such that additional op-
timal solutions and improvements to known upper-bounds
for the reference benchmark problems were obtained. More
recently (Oddi et al. 2008; 2010) initiated a systematic study

aimed at evaluating the effectiveness of single component
strategies within the same uniform software framework.

The IFS algorithm proposed in this work relies on a core
constraint-based search procedure, which generates a con-
sistent ordering of activities that require the same resource
by incrementally adding precedence constraints between ac-
tivity pairs in a temporally feasible solution. Specifically, the
algorithm we propose in this work is an extension of the SP-
PCP procedure proposed in (Oddi and Smith 1997) applied
to the case of scheduling problems without setup times.

In the current literature there are other examples of pro-
cedures for solving scheduling problems with setup times
that are extensions of the counterpart procedures used to
solve the same (or similar) scheduling problem without
setup times. This is the case of the work by (Brucker and
Thiele 1996), for example, which relies on an earlier so-
lutions introduced in (Brucker, Jurisch, and Sievers 1994).
Another example is the more recent work of (Vela, Varela,
and González 2009) and (González, Vela, and Varela 2009),
which proposes effective heuristic procedures based on ge-
netic algorithms and local search. In these works, the local
search procedures that are introduced extend a procedure
originally proposed by (Nowicki and Smutnicki 2005) for
the classical job-shop scheduling problem to the setup times
case by introducing a neighborhood structure that similarly
properties relating to critical paths in an underlying disjunc-
tive graph formulation of the problem. A third example
is the work of (Balas, Simonetti, and Vazacopoulos 2008),
which extends the well-know shifting bottleneck procedure
(Adams, Balas, and Zawack 1988) to the SDST-JSSP case.
Both (Balas, Simonetti, and Vazacopoulos 2008) and (Vela,
Varela, and González 2009) have produced reference results
with their techniques on a previously studied benchmark set
of SDST-JSSP problems initially proposed by (Brucker and
Thiele 1996). We use this benchmark problem set as a basis
for direct comparison to our solution procedure in the exper-
imental section of this paper.

This paper is organized as follows. An introductory sec-
tion defines the reference SDST-JSSP problem and its rep-
resentation. A central section describes the iterative im-
provement search, the adopted relaxation straegies and the
core constraint-based search procedure. An experimental
section describes the performance of our algorithm on the
benchmark problem set of (Brucker and Thiele 1996) and



the most interesting results are explained. Some conclusions
and a discussion of future work end the paper.

The Scheduling Problem with Setup Times
In this section we provide a definition of the job-shop sched-
uling problem with sequence dependent setup times (SDST-
JSSP). The SDST-JSSP entails synchronizing the use of a
set of resources R = {r1, . . . , rm} to perform a set of n
activities A = {a1, . . . , an} over time. The set of activi-
ties is partitioned into a set of nj jobs J = {J1, . . . , Jnj}.
The processing of a job Jk requires the execution of a strict
sequence of m activities aik ∈ Jk (i = 1, . . . ,m), and the
execution of each activity aik is subject to the following con-
straints:
• resource availability - each activity ai requires the exclu-

sive use of a single resource rai for its entire duration; no
preemption is allowed and all the activities included in a
job Jk require distinct resources.

• processing time constraints - each ai has a fixed process-
ing time pi such that ei − si = pi, where the variables si
and ei represent the start and end time of ai.

• sequence dependent setup times - for each resource r, the
value strij represents the setup time between two generic
activities ai and aj requiring the same resource r, such
that ei + strij ≤ sj . The setup times strij verify the
so-called triangular inequality (see (Brucker and Thiele
1996; Artigues and Feillet 2008)). The triangle inequal-
ity (traditionally in literature, this property is always con-
sidered verified) imposes that, for each three activities
ai, aj , ak requiring the same resource, the inequality
strij ≤ strik + strkj holds.

• job release dates - each Job Jk has a release date rdk,
which specifies the earliest time that the any activity in Jk
can be started.
A solution S = {S1, S2, . . . , Sn} is an assignment Si to

the activities start-times si such that all the above constraints
are satisfied. Let Ck be the completion time for the job
Jk, the makespan is the value Cmax = max1≤k≤nj{Ck}.
An optimal solution S∗ is a solution S with the minimum
value of Cmax. We observe as the proposed optimization
problems is NP-hard, because is an extensions of the well-
known job-shop scheduling problem J ||Cmax (Sotskov and
Shakhlevich 1995).

A CSP Representation
There are different ways to formulate this problem as a Con-
straint Satisfaction Problem (CSP) (Montanari 1974). Anal-
ogously to (Cheng and Smith 1994; Oddi and Smith 1997),
the problem is treated as one of establishing precedence con-
straints between pairs of activities that require the same re-
source, so as to eliminate all possible conflicts in the re-
source use. Such representation is close to the idea of dis-
junctive graph initially used for the classical job shop sched-
uling without setup times and also used in the extended case
of setup times (Brucker and Thiele 1996; Balas, Simonetti,
and Vazacopoulos 2008; Vela, Varela, and González 2009;
Artigues and Feillet 2008).

Let G(AG, J,X) be a graph where the set of vertices
AG contains all the activities of the problem together with
two dummy activities, a0 and an+1, respectively represent-
ing the beginning (reference) and the end (horizon) of the
schedule. J is a set of directed edges (ai, aj) representing
the precedence constraints among the activities (job prece-
dences constraints) and are weighted with the processing
time pi of the edge’s source activity ai. The set of undi-
rected edges X represents the disjunctive constraints among
the activities requiring the same resource r; there is an edge
for each pair of activities ai and aj requiring the same re-
source r and the related label represents the set of possible
ordering between ai and aj : ai � aj or aj � ai.

Hence, in CSP terms, a decision variable xijr is defined
for each pair of activities ai and aj requiring resource r,
which can take one of two values: ai � aj or aj � ai. It is
worth noting that in the current case we have to take into
account the presence of sequence dependent setup times,
which must be included when an activity ai is executed on
the same resource before another activity aj . As we will see
in the next sections, in case the setup times verify the triangle
inequality, previous decisions on the xijr can be represented
as the two temporal constraints: ei+strij ≤ sj (i.e. ai � aj)
or ej + strji ≤ si (i.e. aj � ai).

To support the search for a consistent assignment to the
set of decision variables xijr, for any SDST-JSSP we de-
fine the directed graph Gd , called distance graph, which is
an extended version of the disjunctive graph G(AG, J,X).
The set of nodes V represents time points, where tp0 is the
origin time point(the reference point of the problem), while
for each activity ai, si and ei represent its start and end time
points respectively. The set of edges E represents all the im-
posed temporal constraints, i.e., precedences, durations and
setup times. Given two time points tpi and tpj , all the con-
straints have the form a ≤ tpj − tpi ≤ b, and for each
constraint specified in the SDST-JSSP instance there are
two weighted edges in the graph Gd(V,E); the first one
is directed from tpi to tpj with weight b and the second
one is directed from tpj to tpi with weight −a. The graph
Gd(V,E) corresponds to a Simple Temporal Problem (STP)
and its consistency can be efficiently determined via short-
est path computations (see (Dechter, Meiri, and Pearl 1991)
for more details on the STP). Moreover, any time point tpi
is associated to a given feasibility interval [lbi, ubi], which
determines the current set of feasible values for tpi. Thus,
a search for a solution to a SDST-JSSP instance can pro-
ceed by repeatedly adding new precedence constraints into
Gd(V,E) and recomputing shortest path lengths to confirm
that Gd(V,E) remains consistent. Given a Simple Temporal
Problem, the problem is consistent if and only if no closed
paths with negative length (or negative cycles) are contained
in the graph Gd.

Let d(tpi, tpj) (d(tpj , tpi)) designate the shortest path
length in graph Gd(V,E) from node tpi to node tpj (from
node tpj to node tpi); then, the constraint −d(tpj , tpi) ≤
tpj−tpi ≤ d(tpi, tpj) is demonstrated to hold (see (Dechter,
Meiri, and Pearl 1991)). Hence, the minimal allowed dis-
tance between tpj and tpi is −d(tpj , tpi) and the maxi-
mal distance is d(tpi, tpj). Given that di0 is the length



of the shortest path on Gd from the time point tpi to
the origin point tp0 and d0i is the length of the short-
est path from the origin point tp0 to the time point
tpi, the interval [lbi, ubi] of time values associated to
the generic time variable tpi is computed on the graph
Gd as the interval [−d(tpi, tp0), d(tp0, tpi)] (see (Dechter,
Meiri, and Pearl 1991)). In particular, given a STP,
the following two sets of value assignments Slb =
{−d(tp1, tp0),−d(tp2, tp0), . . . ,−d(tpn, tp0)} and Sub =
{d(tp0, tp1), d(tp0, tp2), . . . , d(tp0, tpn)} to the STP vari-
ables tpi represent the so-called earliest-time solution and
latest-time solution, respectively.

A Precedence Constraint Posting Procedure
The proposed procedure for solving instances of SDST-
JSSP is an extension of the SP-PCP scheduling procedure
(Shortest Path-based Precedence Constraint Posting) pro-
posed in (Oddi and Smith 1997), which utilizes shortest
path information in Gd(V,E) for guiding the search pro-
cess. Similarly to the original SP-PCP procedure, shortest
path information is utilized in a twofold fashion to enhance
the search process.

Figure 1: slack(ei, sj) = d(ei, sj) − strij Vs.
co–slack(ei, sj) = −d(sj , ei)− strij

The first way in which shortest path information is ex-
ploited is by introducing new dominance conditions (which
adapt to the setup times case those presented in (Oddi
and Smith 1997)), through which problem constraints are
propagated and unconditional decisions for promoting early
pruning of alternatives are identified. The concepts of
slack(ei, sj) and co–slack(ei, sj) (complementary slack)
play a central role in the definition of such new dom-
inance conditions. Given two activities ai, aj and the
related interval of distances [−d(sj , ei), d(ei, sj)]

1 and
[−d(si, ej), d(ej , si)]

2 on the graph Gd, they are defined
as follows (see Figure 1):

• slack(ei, sj) = d(ei, sj)− strij is the difference between
the maximal distance d(ei, sj) and the setup time strij .
Hence, it provides a measure of the degree of sequenc-

1between the end-time ei of ai and the start-time sj of aj
2between the end-time ej of aj and the start-time si of ai

ing flexibility between ai and aj
3 taking into account the

setup time constraint ei + strij ≤ sj . If slack(ei, sj) < 0,
then the ordering ai � aj is not feasible.

• co–slack(ei, sj) = −d(sj , ei)− strij is the difference be-
tween the minimum possible distance between ai and aj ,
−d(si, ej), and the setup time strij ; if co–slack(ei, sj) ≥
0 (in Figure 1 a negative co-slack is represented), then
there is no need to separate ai and aj , as the setup time
constraint ei + strij ≤ sj is already satisfied.

For any pair of activities ai and aj that are competing for
the same resource r, the new dominance conditions describ-
ing the four possible cases of conflict are defined as follows:

1. slack(ei, sj) < 0 ∧ slack(ej , si) < 0

2. slack(ei, sj) < 0 ∧ slack(ej , si) ≥ 0 ∧ co–slack(ej , si) < 0

3. slack(ei, sj) ≥ 0 ∧ slack(ej , si) < 0 ∧ co–slack(ei, sj) < 0

4. slack(ei, sj) ≥ 0 ∧ slack(ej , si) ≥ 0

Condition 1 represents an unresolvable conflict. There
is no way to order ai and aj taking into account the setup
times strij and strji, without inducing a negative cycle in the
graph Gd(V,E). When Condition 1 is verified the search
has reached an inconsistent state.

Conditions 2, and 3, alternatively, distinguish uniquely re-
solvable conflicts, i.e., there is only one feasible ordering of
ai and aj , and the decision of which constraint to post is thus
unconditional. If Condition 2 is verified, only aj � ai leaves
Gd(V,E) consistent. It is worth noting that the presence of
the condition co–slack(ej , si) < 0 entails that the minimal
distance between the end time ej and the start time si is
shorter than the minimal required setup time strji; therefore,
we still need to impose the constraint ej + strji ≤ si. Con-
dition 3 works similarly, and entails that only the ai � aj
ordering is feasible. Finally, Condition 4 designates a class
of resolvable conflicts; in this case, both orderings of ai and
aj remain feasible, and it is therefore necessary to perform
a search decision.

The second way in which shortest path information is ex-
ploited is by defining variable and value ordering heuris-
tics to select and resolve conflicts in the set characterized by
Condition 4. As stated above, in this context slack(ei, sj)
and slack(ej , si) provide measures of the degree of se-
quencing flexibility between ai and aj . The variable or-
dering heuristic attempts to focus first on the conflict with
the least amount of sequencing flexibility (i.e., the con-
flict that is closest to previous Condition 1). More pre-
cisely, the conflict (ai, aj) with the overall minimum value
of V arEval(ai, aj) = min{bdij , bdji} is always selected
for resolution, where4:

bdij =
slack(ei,sj)√

S
, bdji =

slack(ej ,si)√
S

3Intuitively, the higher is the degree of sequencing flexibility,
the larger is the set of feasible assignments to the start-times of ai

and aj
4The

√
S bias is introduced to take into account cases where

a first conflict with the overall min{slack(ei, sj), slack(ej , si)}
has a very large max{slack(ei, sj), slack(ej , si)}, and a second
conflict has two shortest path values just slightly larger than this
overall minimum. In such situations, it is not clear which conflict
has the least sequencing flexibility.



PCP(Problem, Cmax)
1. S ← InitSolution(Problem, Cmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableConflict(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. Con←ChooseResolvableConflict(S)
11. if (Con = nil)
12. then return(S)
13. else begin
14. Prec← ChoosePrecConstraint(S, Con)
15. PostConstraint(S, Prec)
16. end
17. end
18. end-loop
19. return(S)

Figure 2: Basic PCP algorithm

and

S =
min{slack(ei, sj), slack(ej , si)}
max{slack(ei, sj), slack(ej , si)}

As opposed to variable ordering, the value ordering
heuristic attempts to resolve the selected conflict (ai, aj)
simply by choosing the precedence constraint that retains
the highest amount of sequencing flexibility. Specifically,
ai � aj is selected if bdij > bdji and aj � ai is selected
otherwise.

The PCP Algorithm
Figure 2 gives the basic overall PCP solution procedure,
which starts from an empty solution (Step 1) where the
graphs Gd is initialized according to the previous section on
the CSP representation of the problem. Also, the procedure
accepts a never-exceed value (Cmax) of the objective func-
tion of interest used to impose an initial global makespan to
all the jobs.

The PCP algorithm shown in Figure 2 analyses all pairs
(ai, aj) of activities that require the same resource (i.e., the
decision variables of the corresponding CSP problem), and
decides their values in terms of precedence ordering (i.e.,
ai � aj or aj � ai, see Section ), on the basis of the re-
sponse provided by the dominance conditions.

In broad terms, the procedure in Figure 2 interleaves the
application of dominance conditions (Steps 4 and 7) with
variable and value ordering (Steps 10 and 14 respectively)
and updating of the solution graph Gd (Steps 8 and 15) to
conduct a single pass through the search tree. At each cy-
cle, a propagation step is performed (Step 3) by the func-
tion Propagate(S), which propagates the effects of post-
ing a new solving decision (i.e., a constraint) in the graph
Gd. In particular, Propagate(S) updates the shortest path

distances on the graph Gd. We observe that within the main
loop of the procedure PCP shown in Figure 2 new constraints
are added incrementally (one-by-one) to Gd, hence the com-
plexity of this step 5 is in the worst case O(n2).

A solution is found when the PCP algorithm finds a fea-
sible assignment to the activity start times such that all re-
source conflicts are resolved (i.e., all the setup times stij are
satisfied), according to the following proposition:

Proposition 1 A solution S is found when none of the four
dominance conditions is verified on S.

The previous assertion can be demonstrated by contra-
diction. Let us suppose that the PCP procedure exits with
success (none of the four dominance conditions is verified
on S) and that at least two sequential activities ai and aj ,
requiring the same resource r do not satisfy the setup con-
straints ei + strij ≤ sj or ej + strji ≤ si. Since the tri-
angle inequality holds for the input problem, it is guaran-
teed that the length of the direct setup transition ai � aj
between two generic activities ai and aj is the shortest pos-
sible (i.e., no indirect transition ai ; ak ; aj having a
shorter overall length can exist). This fact is relevant for
the PCP approach, because the solving algorithm proceeds
by checking/imposing either the constraint ei + strij ≤ sj
or the constraint ej + strji ≤ si for each pair of activities.
Hence, when none of the four dominance conditions is veri-
fied, each subset of activities Ar requiring the same resource
r is totally ordered over time. Clearly, for each pair (ai, aj),
such that ai, aj ∈ Ar, either co–slack(ei, sj) ≥ 0 or
co–slack(ej , si) ≥ 0; hence, all pairs of activities (ai, aj)
requiring the same resource r satisfy the setup constraints
ei + strij ≤ sj or ej + strji ≤ si. In fact, by definition
co–slack(ei, sj) ≥ 0 implies −d(sj , ei) ≥ strij and to-
gether the condition sj − ei ≥ −d(sj , ei) (which holds be-
cause Gd is consistent), we have ei + strij ≤ sj (a similar
proof is given for co–slack(ej , si) ≥ 0).

To wrap up, when none of the four dominance conditions
is verified and the PCP procedure exits with success, the
Gd graph represents a consistent Simple Temporal Prob-
lem and, as described in the previous section on the CSP
representation of the problem, one possible solution of the
problem is the so-called earliest-time solution, such that
Sest = {Si = −d(tpi, tp0) : i = 1 . . . n}.

The Optimization Algorithm
Figure 3 introduces the generic IFS procedure. The algo-
rithm basically alternates relaxation and flattening steps until
a better solution is found or a maximal number of iterations
is executed. The procedure takes two parameters as input:
(1) an initial solution S; (2) a positive integer MaxFail
which specifies the maximum number of non-makespan im-
proving moves that the algorithm will tolerate before ter-

5Let us suppose we have a consistent Gd, in the case we add a
new edge (tpx, tpy) with weight wxy , if wxy + d(tpy, tpx) ≥ 0
(Gd remains consistent, because no negative cycle is added), then
the generic shortest path distance can be updated as d(tpi, tpj) =
min{d(tpi, tpj), d(tpi, tpx) + wxy + d(tpy, tpj).}



IFS(S,MaxFail)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤MaxFail) do
4. RELAX(S)
5. S ←PCP(S,Cmax(Sbest))
6. if Cmax(S) < Cmax(Sbest) then
7. Sbest ← S
8. counter← 0
9. else
10. counter← counter + 1
11. return (Sbest)
end

Figure 3: The IFS schema

minating. After initialization (Steps 1-2), a solution is re-
peatedly modified within the while loop (Steps 3-10) by the
application of the RELAX procedure, as explained in the fol-
lowing section, and the PCP procedure (see Figure 2). On
each iteration, the RELAX step reintroduces the possibility
of resource contention, and the PCP step then restores re-
source feasibility by removing detected resource conflicts.
In the case a better makespan solution is found (Step 6), the
new solution is saved in Sbest and the counter is reset to 0. If
no improvement is found in MaxFail moves, the algorithm
terminates and returns the best solution found.

The algorithms we are describing here are all based on a
representation of the basic scheduling problem as a prece-
dence graph G(AG, J,X) introduced above. We remember
that G is a graph where the set of vertices AG contains all the
activities of the problem together with two dummy activities,
a0 and an+1. J is a set of directed edges (ai, aj) represent-
ing the job precedences constraints. The set of undirected
edges X represents the disjunctive constraints among the
activities requiring the same resource r; there is an edge for
each pair of activities ai and aj requiring the same resource
r and the related label represents the set of possible ordering
between ai and aj : ai � aj or aj � ai. A solution S is
given as a affine graph GS(AG, J,XS), such that each undi-
rected edge (ai, aj) in X is replaced with a directed edge
representing one of possible ordering between ai and aj :
ai � aj or aj � ai. In general the directed graph GS rep-
resents a set of temporal solutions (S1, S2, . . . , Sn) that is,
a set of assignments to the activities’ start-times which are
consistent with the set of imposed constraints XS .

In the next two subsection we define two different relax-
ation procedures based on the graph GS .

Relaxation Procedures
The first part of the IFS cycle is the relaxation step, wherein
a feasible schedule is relaxed into a possibly resource in-
feasible, but precedence feasible, schedule by retracting a
number of scheduling decisions. Given the graph repre-
sentation described above, each such decision is a prece-
dence constraint between a pair of activities that are com-
peting for the same resource capacity. The first strat-

CPRELAX(S, pr, nr)
begin
1. for k = 1 to nr

2. forall (ai, aj) ∈ CriticalPath(S) ∩XS

3. if random(0,1) < pr
4. then S ← S \ (ai, aj)
end

Figure 4: Relaxation procedure based on removal from cri-
tical path

egy we present, used in (Cesta, Oddi, and Smith 2000;
Michel and Van Hentenryck 2004) for problems without
setup times, removes precedence constraints between pair of
activities belonging to the solution critical path, and hence
is called cp-based relaxation. The second strategy, similar
to the one proposed in (Godard, Laborie, and Nuitjen 2005)
again for problems without setup times, starts from a GS so-
lution and randomly breaks some total orders (or chains) im-
posed on the subset of activities requiring the same resource
r, and hence is given the name chain-based relaxation.

Precedence Relaxation The cp-based relaxation strat-
egy is centered on the solution’s critical path. A path
in GS(A, J,XS) is a sequence of activities a1, a2, . . . , ak,
such that, (ai, ai+1) ∈ J ∪ XS with i = 1, 2, . . . , (k − 1).
The length of a path is the sum of the activities processing
times and a critical path is a path from a0 to an+1 which de-
termines the solution’s makespan Cmax. Any makespan im-
provement will necessarily require a modification to a subset
of precedence constraints laying on the critical path, since
these constraints collectively determine the solution’s cur-
rent makespan. From this observation, the relaxation step
is designed to retract some posted precedence constraints
on the solution’s critical path. Fig. 4 shows the CPRELAX
procedure. Steps 2-4 consider the set of posted precedence
constraints which belong to the current critical path. A sub-
set of these constraints is randomly selected on the basis of
the parameter pr ∈ (0, 1) and then removed from the cur-
rent solution. These steps are iterated nr times (effective
values range from 2 to 6), such that, a new critical path of
S is computed at each iteration. Notice that at each relax-
ation, the new critical path can be completely different from
the previous one. This allows the relaxation step to also take
into account those paths whose length is very close to the
critical one.

Chain Relaxation The chain-based relaxation strategy re-
quires an input solution as a graph GS(A, J,XS). As ex-
plained above, a solution is a modification of the original
precedence graph G that represents the input scheduling
problem. GS contains a set of additional precedence con-
straints XS which can be seen as a set of chains. Each chain
imposes a total order on a subset of problem activities re-
quiring the same resource. Given a generic activity ai, let
pred(ai) be its predecessor activity and succ(ai) its succes-
sor activity.

The CHAINRELAX procedure proceeds in two steps.
First, a subset of activities from the input solution S are ran-



domly selected on the basis of the parameter pr ∈ (0, 1).
Second, a procedure similar to CHAINING - used in (Poli-
cella et al. 2007) - is applied to the set of unselected activ-
ities. The modified CHAINING procedure (that takes into
account setup times) can be accomplished in three steps:
(1) all the previously posted levelling constraints XS are
removed from the solution S; (2) the unselected activities
are sorted by increasing earliest start times; (3) for each re-
source and for each activity ai (according to the increasing
order of start times), ai’s predecessors p is considered and a
precedence constraint (p, ai) is posted, so as to impose the
related setup time from p to ai. The last step is iterated un-
til all the activities are linked by precedence constraints. It
is worth observing that this set of unselected activities still
represents a feasible solution to a scheduling sub-problem,
which is represented as a graph GS , in which the randomly
selected activities float outside the solution thus re-creating
conflict is resource usages.

Experimental Analysis
In this section we propose a set of empirical evaluations of
the IFS algorithm. We have considered a well known bench-
mark set described in the literature and available on the In-
ternet. This benchmark was originally proposed in (Brucker
and Thiele 1996) with the objective of minimizing the
makespan Cmax. The IFS algorithm has been implemented
in CMU Common Lisp Ver. 20a and run on a AMD Phenom
II X4 Quad 3.5 Ghz under Linux Ubuntu 9.0.

The Benchmark Set
This set is composed of 15 instances initially provided
by (Brucker and Thiele 1996) and later integrated with
other 10 instances; they are available at http://www.
andrew.cmu.edu/user/neils/tsp/t2ps/. Each
instance is characterized by the configuration (nJ × nA)
where for every instance, nJ is the number of present jobs
and nA is the number of activities per job. The original
benchmark of 15 problems is divided in sets of 5 instances
each, composed as follows: the first set contains 10×5 prob-
lems, the second set contains 15× 5 problems, and the third
set contains 20× 5 problems. The 10 problems successively
added are divided in two sets of 5 instances each: the first
set contains 15× 5 problems, while the second set contains
20 × 5 problems. Hence, our benchmark is therefore com-
posed of 25 instances that range from 50 to 100 activities; in
the remainder of this work, this benchmark will be referred
to as BTS25.

Results
We propose two different set of experiments, one for the cp-
based relaxation, and another one for the chain-based re-
laxation. In order to give a clear idea of the strength of the
proposed IFS procedure, we report the results obtained with
the combinations of input parameters which gave the best
performance.

Table 1 shows the results for the IFS procedure using the
cp-based relaxation obtained from the values of the param-
eters nr (the number of operated relaxation steps) and pr

(the removal probability on the current critical path). The
column labeller ∆0 shows the average percentage variation
from the infinite capacity makespan, while Ni represents the
number of improved solutions with respect to the best known
solutions for BTS25. The latter are selected as the union
of the best results proposed in the papers (Balas, Simonetti,
and Vazacopoulos 2008), (Vela, Varela, and González 2009)
and (Artigues and Feillet 2008), for the first 15 BTS25 in-
stances; for the last 10 instances, the best results are the ones
proposed in (Balas, Simonetti, and Vazacopoulos 2008).
The column labelled ∆bests contains the average percent-
age variation from the best solutions, while the last column
NiF lat represents the average number IFS cycles performed
over all the BTS25 instances within the imposed cpu bound
of 3200 seconds.

Table 1: the table shows the average percentage variation
from the infinite capacity makespan (∆0), the number of
improved solutions (Ni), the average percentage deviations
from the best-known solutions for the BTS25 (∆bests), and
the average number of IFS cycles (NiF lat) performed over
all the BTS25 instances within the imposed cpu bound of
3200 seconds, for different values of nr and pr (percentage
value).

nr pr Ni ∆0 ∆bests NiF lat

10 1 168.9 2.1 2682.4
15 2 168.7 1.9 2696.2

5 20 1 168.4 2.0 2749.8
25 1 168.8 2.0 2784.1
30 3 167.5 1.6 2785.4
10 2 169.1 2.2 2722.4
15 2 168.9 2.1 2785.6

6 20 1 167.2 1.5 2758.9
25 2 168.7 1.9 2766.6
30 1 168.9 2.0 2782.7
10 3 168.5 2.0 2715.9
15 2 167.7 1.6 2822.0

7 20 2 168.0 1.6 2793.0
25 1 167.2 1.3 2816.7
30 2 168.0 1.6 2810.6
10 1 168.6 2.0 2729.8
15 2 167.8 1.5 2777.8

8 20 2 168.1 1.7 2812.0
25 2 167.6 1.5 2830.3
30 2 168.3 1.6 2842.7

BESTS - 5 163.9 0.2 -

About the results shown in in Table 1, we note that the best
performances are obtained for the value nr = 7, and each
single run has performance quite close to the best known re-
sults (the value ∆bests ranges from 1.3 to 2.0 ). However,
as we are running a random algorithm, we can consider the
best results obtained over the set of performed runs and to
evaluate the overall performance (the row BESTS). In parti-
cular, the average percentage deviation from the best known
results is 0.2 and we want to highlight that in this analysis,
5 problems have been improved.



Table 2: the table shows the average percentage variation
from the infinite capacity makespan (∆0), the number of
improved solutions (Ni), the average percentage deviations
from the best-known solutions for the BTS25 (∆bests), the
average number of IFS cycles (NiF lat) performed over all
the BTS25 instances within the imposed cpu bound of 3200
seconds, for different values of pr (percentage value).

pr Ni ∆0 ∆bests NiF lat

10 0 171.2 3.1 2567.6
15 3 168.3 1.9 2613.7
20 3 168.5 2.1 2610.6
25 3 168.3 1.9 2716.4
30 2 167.7 1.7 2742.1
35 3 166.5 1.1 2726.5
40 3 166.9 1.3 2775.4
45 2 167.7 1.5 2769.3
50 2 167.5 1.4 2779.9
55 2 167.1 1.3 2776.9
60 3 167.0 1.2 2778.7
65 4 167.9 1.5 2769.3
70 2 168.1 1.6 2766.8
75 2 168.6 1.7 2793.7

BESTS 7 164.2 0.3 -

Table 2 shows the results for the IFS procedure using the
chain-based relaxation obtained from the values of the pa-
rameter pr (the probability for the selection of activities).
About the results shown in Table 2 the other parameters have
the same meaning of previous Table 1, and we again impose
on each run a cpu bound of 3200 seconds. We note that
the best performance are obtained within the range of val-
ues of the parameter pr from 35% to 60%. Each single run
has performance quite close to the best known results (the
value ∆bests ranges from 1.1 to 1.5 ). Likewise the pre-
vious case, we can consider the best results obtained over
the set of performed runs and to evaluate the overall perfor-
mance (the row BESTS). In this second case, the average
percentage deviation from the best known results is 0.3 and
we want to highlight that 7 problems have been improved.
Hence, from the previous exploration we can draw the con-
clusion that on average, our algorithm’s performances are in
line with the best known algorithms. In some cases, the best
known results have been improved.

Conclusions
Building from prior research, in particular (Oddi and Smith
1997; Godard, Laborie, and Nuitjen 2005; Oddi et al. 2010),
in this paper we have investigated the use of iterative im-
proving and precedence constraint posting algorithm as a
means of effectively solving scheduling problems with se-
quence dependent setup times. The proposed iterative sam-
pling algorithm uses as its core solving procedure an ex-
tended version of the SP-PCP procedure proposed by (Oddi
and Smith 1997) and two already known relaxation strate-
gies (Oddi et al. 2010) extended in this paper to the case

of scheduling problems with setup times. To demonstrate
the effectiveness of the procedure, a set of experiments were
performed on a well known benchmark set of job shop
scheduling problems with setup times. In the average, our
algorithm’s performances are in line with the known best al-
gorithms, and in some cases it is able to improve the best
known results.
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