
Proceedings of the 2nd Int. Conference on Artificial Intelligence Planning Systems (AIPS-94), 1994

1

Managing Dynamic Temporal Constraint Networks
Roberto Cervoni, Amedeo Cesta, Angelo Oddi

IP-CNR
National Research Council of Italy

Viale Marx 15
I-00137 Rome, Italy

amedeo@pscs2.irmkant.rm.cnr.it

Abstract
This paper concerns the specialization of arc-
consistency algorithms for constraint satisfaction in
the management of quantitative temporal constraint
networks. Attention is devoted to the design of
algorithms that support an incremental style of
building solutions allowing both constraint posting
and constraint retraction. In particular, the AC-3
algorithm for constraint propagation, customized to
temporal networks without disjunctions, is presented,
and the concept of dependency between constraints
described. The dependency information is useful to
dynamically maintain a trace of the more relevant
constraints in a network. The concept of dependency
is used to integrate the basic AC-3 algorithm with a
sufficient condition for inconsistency detection that
speeds up its performance, and to design an effective
incremental operator for constraint retraction.

Introduction
The problem of maintaining consistency among
quantitative temporal constraints plays a significant role in
the problem solving architectures that cope with realistic
situations. Dealing with quantitative time has always been
an important issue both in planning [VER83, BEL86,
DEA87] and in scheduling [RIT86, LEP87]. Dean's TMM
[DEA87, 89] represents the most comprehensive
investigation in the management of a data base of
temporalized information. The formal aspects of the
temporal problem drawn from that approach are dealt with
in [DAV87] and [DEC91].

In this paper we concentrate our attention on the
management of quantitative temporal constraint networks
and in particular on the problem of dynamic management
of those constraints. The problem consists of considering
the possibility of both incremental constraint posting and
constraint retraction in the network. A typical scenario for
such problems is the flexible creation of schedules of
realistic dimension. To be useful to such a task, a temporal
information manager should: (a) be able to accept the
incremental refinement style for building solutions that
most of the current architectures adopt; (b) be able to offer
the possibility of retracting previous choices, e.g. to offer
support for making a resource available if some new high
priority request comes into play; (c) maintain a network
consistent by performing quick update operations --because

the consistency checking is executed quite often in the
problem solving cycles; (d) allow the maximal flexibility
in the specification of temporal constraints. For instance, it
should offer a support to recent scheduling approaches that
do not specify an exact time for the start of the activities,
but just an interval of possibilities [MUS93, SMI93].

A good principle in the attempt of satisfying these
requirements seems to be the utilization of algorithms that:
(a) work incrementally like the problem solver does; (b)
use all the information contained in the previous status of
the network and the computations previously performed to
compute a new scenario; (c) try to circumscribe the
modifications caused by a single change within a sub-area
of the network.

In investigating these issues we have followed the way
traced by Davis [DAV87] and the constraint satisfaction
tradition, focusing on the use of arc-consistency (AC)
algorithms. Those algorithms are used in most cases
because they offer a good trade-off between space and time
complexity. After introducing, in Section 2 and 3, the
main features of the arc-consistency specialized to the
temporal case, we add information in the network, namely
the dependency, that can be easily computed in the AC
framework (Section 4) and which is useful to achieve the
goals we are pursuing: designing dynamic algorithms,
exploiting locality, etc. In particular, we show how the
additional dependency information endows the system
with both properties for quick inconsistency checking
(Section 5) and a powerful tool for deleting constraints
(Section 6).

Quantitative Temporal Networks
A basic definition of temporal constraint networks can be
the following:

Definition 1 - (Temporal Network) - A temporal
network is a directed graph whose nodes represent
time points and whose arcs represent distance
constraints between time points.

Nodes represent points on a time line in which some
change happens (e.g. start-time or end-time of events),
while arcs, that we consider always as directed, are able to
uniformly represent both activities' duration and distance
constraints between distinct activities and events.

In a temporal network, both nodes and arcs are labelled
with a pair of variables. Nodes are labelled with the pair

2

[lb,ub] where lb represents the earliest possible start time
for the time point, given the constraints in the network, and
ub represents the latest possible start time. Arcs are
labelled with the pair of constants [d,D], where d and D
represent the respectively minimal and maximal duration
of the constraint (i.e., the user can specify the duration of a
constraint dc in the form: d dc≤durationdc≤Ddc). A
particular node in the graph, named *reference-point*, has
the pair of constants [0,0] as a label, and represents the
beginning of the considered temporal horizon. The
possible values for the nodes' pairs vary from 0 to h, where
h is the length of the temporal horizon considered in the
particular problem. In the CSP terminology this means that
Node Consistency is guaranteed setting the inizialization
[0,h] to the time-points inserted in a network. Such a
unary constraint is referred in any case to the *reference-
point* -- as done in [DEC91].

The pair [lb,ub] of a node identifies an interval of legal
values for the time variable ti representing the occurrence
of the event. Given a set of constraints (arcs) and their
durations, the pairs [lb,ub] associated with the nodes of the
network are calculated with respect to the reference point
using a constraint propagation algorithm. Such an
algorithm should verify the existence of solutions: it has to
verify the property of temporal consistency of the network
by eliminating the values not compatible with the
constraints from the temporal variables.

Definition 2 - (Temporal Consistency) - A connected
temporal network is said to be temporally consistent if
and only if an assignment of values to the temporal
variables exists that is compatible with all the
constraints in the network.

The problem we are interested in consists of computing the
bounds associated with the nodes when the network is
modified by either adding or removing constraints. It is
worth noting that, for each time-point, we are interested in
having the bounds lb and ub that not only satisfy all the
constraints in the network, but also represent the minimal
and maximal distance between the time-point and the
reference-point . Moreover, we are interested in
performing the previous computation working just on the
part of the network actually affected by the modification.
The reader familiar with [DEC91] can recognize the
problem described above as an instance of the Simple
Temporal Problem (STP). In that paper, the problem of
checking consistency of a given network of constraints is
proved to be polynomial in the number of nodes N when
the STP assumptions hold.

An Incremental Propagate Operator
While a problem solver is creating a schedule or a
temporalized plan, the possible ways of adding constraints
to the temporal network that memorize the partial solution
are: (a) shrinking the interval [lb, ub] associated with an
arc; (b) adding a new arc between any two nodes of the
network; (c) adding a new node and one or more arcs that
connect it to the rest of the network. Case (c) can be

reformulated in terms of cases (a) and (b) considering the
new time-point as unconstrained before the modification.
We speak of propagation sources to refer to constraints'
modifications that require the network revision -- the
effects of each modification should be propagated through
the network.

Figure 1

[d, D]

[lbi,ub i] [lbj,ubj]

tpi tpj

Given an arc (dc) between two time-points, as shown in
Figure 1, the intervals of the two time-points should be
consistent wrt the distance constraint represented by the
arc. This means that from the interval associated with tpi
an algorithm should cut out those values that are
inconsistent with the values in the interval related to tpj via
the constraint [d,D] and vice versa.

Definition 3 - (Arc-Consistency) - A connected
temporal network is said to be arc-consistent if and
only if for any network constraint dc, with bounds
[d, D], between two time-points tpi and tpj, for any
ti∈[lbi,ubi] (tj∈[lbj,ubj]) there always exists a value
tj∈[lbj,ubj] (ti∈[lbi,ubi]), such that tj and ti satisfy
the inequality: d ≤tj-ti≤ D.

To actually check for arc-consistency on a single arc we
use the following property:

Proposition 1 - The simple temporal network in
Figure 1 is arc-consistent if and only if the bounds lbi,
lbj, ubi, ubj satisfy the relations:
a) lbj:=max[lbj,lbi+d]; b) ubj:=min[ubj,ubi+D];
c) lbi:=max[lbi,lbj-D]; d) ubi:=min[ubi,ubj-d];
e) lbi≤ubi; f) lbj≤ubj;

To check the consistency of the whole network we use the
propagate algorithm shown in Figure 2.

Procedure propagate (propagation-sources);
var queue: QueueType; fail: Boolean;

current-arc: ArcType;
begin

fail ← False; queue ← propagation−sources;
while (not-empty queue) and (not fail) do

begin
current-arc ← Pop(queue);
if revise (current-arc)

then fail ← True
else queue ← queue ∪ {arc | arc ≠ current-arc

and arc connected to the nodes whose intervals
have been modified by revise};

end
end Figure 2

The algorithm has an AC-3 shape [MAC77] and
continuously uses the procedure revise that implements
Proposition 1 (i.e., it updates bounds according to
expressions a-d and check conditions e-f). A particular
property of the revise operator, useful in what follows, is
stated by the following proposition:

Proposition 2 - The revise algorithm updates the
bounds by using at most one of a and c (b and d),

3

where a, b, c, and d are the expressions in Proposition
1.

The propagate algorithm is notoriously correct with
respect to the arc-consistency definition [MAC77].

Correctness and Completeness of the Algorithm
The propagate algorithm checks arc-consistency on all the
arcs belonging to the sub-network affected by a
modification. But we are interested in verifying the
existence of a solution to the Simple Temporal Problem,
that is in checking for consistency according to Definition
2. The equivalence between the two types of consistency
(the one practically checked and the one formally defined)
is given by Theorem 1:

Theorem 1 - A temporal network is arc-consistent if
and only if it is also temporally consistent.

Because of Theorem 1, the propagate algorithm is correct
and complete. It recognizes as consistent only networks in
the situations stated by Definition 2. It is worth noting that
completeness holds when the Simple Temporal Problem
hypothesis holds, that is when no disjunction is allowed on
any constraint. Here, we consider as crucial the property of
performing complete inferences in the temporal module for
at least two reasons: (a) because in a problem solving
architecture only the decision making module should be
responsible for cutting the search space using domain
dependent heuristics, while the temporal module should
simply guarantee a service (checking consistency); (b)
because of efficiency issues: dealing with disjunction is a
computationally difficult problem [DEC91] and identifying
practical approaches to deal with disjunction is still an
open issue (e.g., see [SCH92, SCW93]).

Complexity of the Algorithm
A characterization of the worst case of the propagate
algorithm can be obtained in terms of the maximum
number of arcs inserted in the working queue when one or
more source arcs are added. The choice is justified
because such a maximum is directly proportional to the
number of updating actions performed (such operations are
the crucial part of the algorithm). From [MAC85], it is
well known that AC-3 in the general case has complexity
O(d3E) where d is the cardinality of the set of values a
node may assume, while E is the number of arcs in the
network. In our case the expression becomes O(hE) if we
consider that, being the temporal interval an ordered set of
values, the revise operation can check the single constraint
with constant cost rather than with a cost dependent on the
cardinality of the sets associated with the nodes. This
implies that the complexity of AC-3 in the temporal case
looses a factor h2 wrt the general case shown in [MAC85].

Lastly, it should be clear the advantage (in terms of
computational time and space) of the propagate algorithm
wrt PC-2 proposed in [DEC91] for the STP. The
complexity of PC-2 is O(N3). The improvement is due to
the fact that arc-consistency works on arcs that are O(N2)
in a complete graph. Moreover, the average complexity is

reduced when the graph is not complete -- this happens
very often in real schedules. Also in terms of space the AC
is better because does not require an array for the distances
between any couple of nodes as requested in the PC
algorithms. To be fair it should be noted that PC-2 gives
the user more information than the one strictly necessary to
the resolution of the STP, because that algorithm calculates
also the minimal network -- the distance among any pair of
nodes.

Defining Dependency-Chains
As said before, the pair [lbi,ubi] on a given time-point tpi
represents the minimal and maximal possible distance of
the temporal variable ti wrt the *reference-point*. It is
worth noting that the two distances are determined by the
network's more constrained paths and the network's
constraints can be partitioned in two sub-sets:
• the active constraints at least belonging to one of the

most constrained path in the network -- i.e., active
constraints cause a bound on a time-point.

• the inactive constraints not satisfying the previous
property.

To represent the set of active constraints in a given
configuration of the network we slightly modify the
propagate algorithm. In particular, each time the bounds
of a node are modified, we memorize in the node the arc
that caused the modification, distinguishing between the
modification of the lower and of the upper bounds -- this is
done with a straightforward change of the revise procedure.
The two pieces of information are stored in each node and
called Dependencies: in particular, the Lower-bound
(Upper-bound) Dependency is the arc that last modified the
lower (upper) bounds of the time-point. As a consequence,
starting from any node and following the dependency
pointers of each given type, it is possible to cover two
distinct paths (sequences of arcs) to the *reference-point*.
We call these paths Dependency-Chains.

To clarify the definition of dependency, we introduce the
functions Last-mod-lb (tpi) and Last-mod-ub (tpi).
Such functions, when applied to any node of the network,
return respectively a reference to the last arc that has
changed the lower/upper bound of the node. If the lower
bound (upper bound) of the node interval has never been
modified then Last-mod-lb(tpi) = N I L (Last-mod-ub
(tpi)=NIL). These functions allow to maintain a trace of
critical paths, composed by distance constraints
representing arcs that act on their extreme nodes.

Definition 4 - (Active/Inactive Arc) - Let <tpi, tpj> be
an arc between the time-point tpi and the time-point
tpj. The arc is said: (a) active wrt upper-bounds if
either Last-mod-ub (tpj)=<tpi, tpj> or Last-mod-ub
(tpi) =<tpi, tpj> hold; (b) active wrt lower-bounds if
either Last-mod-lb (tpj)=<tpi, tpj> or Last-mod-lb(tpi)
=<tpi, tpj> hold; (c) inactive otherwise.

4

Definition 5 - (Dependency-chain) - We define Lower-
bound (or Upper-bound) Dependency-chain a non
directed path in a temporal network whose arcs are
active wrt lower-bounds (upper-bounds).

It is worth noting that, as a consequence of Proposition 2,
for any arc <tpi, tpj> the following properties necessarily
hold:

Last-mod-lb (tpi)≠Last-mod-lb (tpj)
Last-mod-ub (tpi)≠Last-mod-ub (tpj)

unless both of them are equal to NIL. Such a property
causes that, even if the path of a dependency-chain can be
non directed wrt the distance constraints direction, it is
always directed wrt dependency pointers direction.
Given the definitions, a theorem can be proved:

Theorem 2 - Given a consistent temporal network in
which all nodes but the reference-point satisfy the
inequality:

Last-mod-lb(tpi)≠NIL (Last-mod-ub(tpi)≠NIL)
then all the lower bounds (upper bounds) dependency-
chains form a spanning tree of the network.

The set of dependency-chains produces two spanning trees
over the network, one for the lower-bound and one for the
upper-bound dependencies.

0 5

[20,40]

[10,20] [60,90]

[90,120][50,70]

[50,85]

[70,140]

[35,55][15,25]

[0,0]

[20,10
0]

[15,30][15,30]

[20,30
]

[25,40]

[20,
40]

[40,6
0]

[10,30] [40,60]

[15,25]

[40,70][10,20] [10,50]4

2

8

3

6

97

1

Lower-bound
Dependency

Upper-bound
Dependency

Figure 3
Examples of the previous definitions can be found in the
temporal network depicted in Figure 3. We can see that the
only inactive constraint is the arc <8, 6>, while <5,3> is
active both wrt lower and upper-bounds, the <4, 8> is
active wrt lower-bounds, <7,8> is active wrt upper-bounds.
Focusing the attention on node 5, we can see that it has a
lower-bound dependency chain given by the path <0, 4>,
<4, 2>, <2, 3>, <5, 3> that is responsible for its lower
bound 60, while the upper-bound dependency-chain
<0, 4>, <4, 5> determines the node's upper-bound 90.

As said before, the updating of dependency-chains
caused by incremental modification of the network is
performed by the propagate algorithm each time a node
interval has been changed by the propagation process. The
complexity of the propagate does not change because the
only added cost is a constant factor internal to the revise,
needed to update the two Last-mod functions. A special
visit to the network is not necessary.

Improving Propagation Efficiency
A first aspect that can be addressed using the dependency-
chains is the quick detection of inconsistency while
inserting new constraints. Chances are that the propagate
algorithm detects an inconsistency only after a long

sequence of update operations on closed cycles. In
particular, the presence of inconsistency due to update
operations on a closed path may be particularly dangerous
as shown in Figure 4 and pointed out in [DAV87, page
318]. The example shows the updating process activated
by the insertion of a constraint [301, 1000] between nodes
1 and 3. Propagating the effects of the new constraint
involves a closed (non-oriented) path. The propagate
continuously modifies the lower bounds of nodes' intervals
with step 1 (e.g., the lower bound of node 1 is set to 1, 2, 3
...). As a consequence, an inconsistency is detected only
after a number of iterations given by the length of the
smallest nodes' intervals on the closed path. A "cycle" of
the propagation algorithm is not necessarily given by an
oriented cycle in the temporal graph, but it can be
generated also by a closed non-oriented path. If the
algorithm is cycling, then it is inevitable that a condition
lb>ub eventually happens. Early recognition of cycles
allows the propagation to be promptly stopped .

[0, 500] [3, 800]

[1, 100] [2, 200]

[301,1000]

[301, 800]
[302, 800]

[102, 600]
[101, 600]

[2, 500]
[1, 500]

[1, 600]

1 3

2

Figure 4
It is worth noting that in the network of Figure 4 the
dependency-chain is closed. Using previous Theorem 2 we
formulate the following corollaries:

Corollary 1 - The existence of a cycle in a
dependency-chain is a sufficient condition for the
inconsistency of a temporal network.
Corollary 2 - Given a consistent network and a set of
new constraints, if a dependency-chain contains a cycle
then at least one of the new constraints is contained in
the cycle.

The two properties suggest a modification of the propagate
that allows the algorithm to stop the propagation in the
critical case of Figure 4. The new version of the algorithm
is close to the previous one, the difference consisting of a
check performed on the arcs inserted in the working queue.
If the current arc is a propagation source then a check-cycle
function checks if the arc belongs to a closed dependency-
chain. If it does then an inconsistency is suddenly detected
and the update process is stopped. To verify the existence
of a closed dependency-chain in a network with N nodes
has a cost O(N). In fact, in the worst case the algorithm
visits all the arcs belonging to a chain, i.e., (N - 1) arcs.
The additional cost is balanced by the conspicuous
advantages shown by the experimental evaluation of the
average case.

The experimentation has been carried out using a
random network generator we have implemented. The
generator incrementally builds a network by posting new
constraints. The constraints are generated using a pseudo-
random number generator on a network consisting of a

5

given number of nodes. In the present set of experiments,
the network randomly generated is characterized by a ratio
between the number of arcs and the number of nodes given
by 5. The particular ratio is justified by the shape of the
networks actually generated in a problem solving
architecture we are working with, but analogous results
have been obtained for different values of the ratio.

As done for the worst-case analysis, we choose the
number of the local propagation operations as a measure of
performance. Using the total number of arcs affected by
propagation, we obtain a measure independent of a
particular hardware. The average numbers are calculated
on a total of 300 (three hundred) experiments generated by
using different random seeds. The results represent a first
experimental evidence of the usefulness of the property. In
Table 1 a comparison is shown between the basic version
of the propagate algorithm and the one which uses the
sufficient condition stated in Corollary 2. Aarts and Smith
have incorporated our cycle detection in the operational
environment described in [AAR94] obtaining an actual
improvement in the overall cost of the propagation. It
should be noted that the property refers to a structural
property of the dependency graph and it holds even when
multiple propagation sources are active.

#OP-N
#OP-CD

#OP-N: number of revise operations in the basic propagation algorithm
#OP-CD: number of revise operation when the algorithm uses the cycle detection

57 110 137 353 462

480 1232 1456 3950 8456

Table 1: comparison between the basic version of the propagate algorithm and
 the one which uses the sufficient condition stated in Corollary 2.

(Time points) (50) (100) (800)(400)(200)
Edges 250 500 1000 2000 4000

A Remove-Constraint that Exploits Locality
The remove-constraint algorithm can be used in all the
cases in which the temporal network is modified by
relaxing some of the constraints. In those cases, we
perform just an updating of the sub-network affected by the
deletion using a propagation process similar to the one in
the insertion case. This process does not require checking
for consistency because removing constraints means
relaxing the problem. If the initial network is consistent, it
will be also consistent after the deletion of the constraint,
because while the insertion of constraints in general
narrows the number of solutions for the temporal problem,
the retraction widens the number of solutions.

The dependency information allows the temporal
manager to "remember" which constraint caused the more
recent modification of the nodes' bounds. Using that
information we can distinguish two cases:
• If the removed constraint does not belong to any

dependency-chain (it is an inactive arc), its deletion does
not modify the distances among nodes and does not
require update operations.

• If the constraint belongs to a dependency-chain (it is
active wrt either lower-bounds or upper-bounds or both),
it determines the present bound intervals of at least one
of its extreme nodes. In this case propagation is
necessary to restore previous bounds.

The distinction is interesting because it points out a sub-
case in which no computation is needed. The property is
exemplified in Figure 3 by the retraction of constraint
<8,6>. All the bounds in the network are invariant wrt that
retraction.

Also in the cases that require propagation, the
dependency information results useful to restrict the
propagation in a sub-network. Being dc the arc to remove,
the sub-network influenced by its retraction contains the
time-point tpi such that last-mod-lb(tpi)=dc and all the
time-points connected to the dependency-chains that can be
covered from tpi moving forward wrt the *reference-point*
(i.e., all the time-points in a dependency sub-tree having tpi
as root).

We explain this property with reference to Figure 3. If
we retract the constraint <4, 8> the nodes affected by the
modification are #8 and #9 because their lower bounds
depend on the removed arc. The key idea is that a sub-tree
of the dependency graph has remained isolated from the
reference point. A straightforward algorithm to re-
establishing a consistent situation consists of covering the
sub-tree and, for each time-point in it, inserting all the
incident arcs in a queue, and applying the usual
propagation algorithm to that queue. In the example, the
algorithm covers the sub-tree containing nodes #8 and #9
and inserts in the queue the arcs <7, 8>, <8, 6> <8, 9>
because one of them will be reconnected to a lower-bound
dependency-chain. Each time point in the sub-tree should
have the lower bound recomputed since their current bound
is wrong. So the bound is relaxed to the default value 0 in
the case of lower-bound dependency deletion (h in upper-
bound dependency deletion). The usual propagation is
applied to the arcs in the queue, without checking for
consistency. In the worst case the remove-constraint
algorithm has the same complexity of the propagate, but it
also has the same property of localization of the
propagation to a subnetwork, that improves its performance
in the average case.

Procedure remove-constraint (constraint)
var arc: ArcType; sub-net-arcs: QueueType;

tpi, tp-mod-lb, tp-mod-ub: TimePointType;
begin

sub-net-arcs ← NIL;
if <constraint is active wrt lower/upper-bounds>

then begin
tp-mod-lb ← tpi s.t. last-mod-lb(tpi)=constraint;
tp-mod-ub ← tpi s.t. last-mod-ub(tpi)=constraint;
delete (constraint);
if (tp-mod-lb <> NIL) then sub-net-arcs ←

sub-net-arcs ∪ sub-net-arc-lb(tp-mod-lb);
if (tp-mod-ub <> NIL) then sub-net-arcs ←

sub-net-arcs ∪ sub-net-arc-ub(tp-mod-ub);
update-sub-network (sub-net-arcs);

 end
else delete (constraint);

end. Figure 5
Figure 5 shows the remove-constraint algorithm. The
procedure delete physically deletes the arc from the
network. The subnetwork to be updated is decided by the

6

procedure sub-net-arc-lb that checks the lower-bound
dependencies, and by sub-net-arc-ub that checks the upper-
bound dependencies. Figure 6 shows the sub-net-arc-lb,
the body of the sub-net-arc-ub being analogous but the
relaxation of the time-point's upper-bound to h. The actual
update of the network is performed by the update-sub-
network procedure. This procedure is very similar to the
propagate, but the queue is initialized with the result of the
previous analysis (sub-net-arc procedures) and consistency
is not checked.
Procedure sub-net-arc-lb(tp)
 var sub-net-arcs:QueueType; tpi: TimePointType; arc: ArcType;

begin
 for-each arc in {lower-bounds dependency-chains that

 start from tp forward wrt *reference-point*}
 do begin

tpi ← time-point s.t. Last-mod-lb (tpi) = arc;
<relax tpi's lower bound to 0>;
sub-net-arcs ← {arc}∪ sub-net-arcs

 end;
return sub-net-arcs

end Figure 6
Table 2 shows the average cost of a deletion in network of
increasing dimensions. The comparison is done wrt a
previous version of the algorithm called global-remove-
constraint that does not use the dependency information
but updates all the bounds in the time-point to [0, h] and
then re-computes the new values applying the update-sub-
network to the whole network. From the data in Table 2,
we have a confirmation that the (random) deletion of a
constraint from the network requires a small number of
updating information (around 10% of the total number of
arcs). It is worth remembering that applying PC-2 to this
problem is not convenient because the cost is bound to N3.

Table 2: average cost of a deletion in networks of increasing dimensions.

#OP-G: number of revise operations in the global-remove-constraint algorithm

#OP-L

#OP-L: number of revise operations in the remove-constraint algorithm

115 255 425 935 1190
(Time points) (50) (100) (800)(400)(200)
Edges 250 500 1000 2000 4000

#OP-G 1401 4132 10281 27311 73925

Conclusions
In the paper we have discussed the application of AC-3 to
the Simple Temporal Problem, and proposed the
integration of the basic algorithm with the dependency
information. The dependency pointers are stored
preserving the O(hE) complexity of AC-3 specialized to
the temporal case. The dependency information represents
the concept of "causality of modifications" in the network.
We have shown how such a concept is useful to define a
structural property of the network that allows an
inconsistency to be efficiently recognized and to design a
remove-constraint operator that works in an incremental
way and exploits the locality of the modification. The
main results of our study is the analysis of the conditions
for dynamically maintaining consistent information in a
temporal network. We have used algorithms that,
exploiting simple structural properties of the constraints,
allow incremental computations, use previous computation

and exploit locality when possible. Such properties are
particularly useful when a problem solving architecture
deals with tasks of relevant dimensions as in the case of
scheduling problems or problems that require the
integration of planning and scheduling. As shown by the
proposed experimental results, the number of computations
required by a modification is a small fraction of the number
of constraints in the network.

Due to space limits the current presentation is concise.
A longer paper containing proofs and further experimental
results is available from the authors.
Acknowledgements. The authors would like to thank Luigia
Carlucci Aiello, Daniela D'Aloisi and the AIPS-94 anonymous
reviewers for useful comments and suggestions. The authors
were partially supported by CNR under "Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo". Amedeo Cesta is also
partially supported by CNR under Special Project on Planning.

References
[AAR94] Aarts, R.J., S.F. Smith, A High Performance Scheduler
for an Automated Chemistry Workstation, to appear in
Proceedings of ECAI 94, Amsterdam, The Netherlands, 1994.
[BEL86] Bell, C., Tate, A., Using Temporal Constraints to
Restrict the Search in a Planner, AI Applications Institute, AIAI-
TR-5, University of Edinburgh, Scotland, 1986.
[DAV87] Davis, E., Constraint Propagation with Interval Labels,
Artificial Intelligence, 32, 1987, 281-331.
[DEA87] Dean, T.L., McDermott, D.V., Temporal Data Base
Management. Artificial Intelligence, 32, 1987. 1-55.
[DEA89] Dean, T.L., Using Temporal Hierarchies to efficiently
maintain large temporal databases. Journal of the ACM, 36, 4,
1989, 687-718.
[DEC91] Dechter, R., Meiri, I., Pearl, J., Temporal constraint
networks. Artificial Intelligence, 49, 1991, 61-95.
[LEP87] Le Pape, C., Smith, S.F., Management of Temporal
Constraints for Factory Scheduling. Technical Report CMU-RI-TR-
87-13, Carnegie Mellon University, June 1987.
[MAC77] Mackworth, A. K., Consistency in Networks of
Relations, Artificial Intelligence, 8, 1977, 99-118.
[MAC85] Mackworth, A. K., Freuder, E. C., The Complexity of
Some Polynomial Network Consistency Algorithms for
Constraint Satisfaction Problems. Artificial Intelligence, 25, 1985,
65-74.
[MUS93] Muscettola, N., Scheduling by Iterative Partition of
Bottleneck Conflicts. Proc. 9th IEEE Conference on AI
Applications , Orlando, FL, 1993.
[RIT86] Rit, J.F., Propagating Temporal Constraints for
Scheduling, Proc. of AAAI-86, Philadelphia, PA, 1986.
[SCH92] Schrag, R., Boddy, M., Carciofini, J., Managing
Disjunction for Practical Temporal Reasoning, Proceedings of KR
'92, Morgan Kaufmann, 1992.
[SCW93] Schwalb, E., Dechter, R., Coping With Disjunctions in
Temporal Constraint Satisfaction Problems, Proceedings of
AAAI-93, Washington, DC, 1993.
[SMI93] Smith, S.F., Cheng, C., Slack-Based Heuristics for
Constraint Satisfaction Scheduling, Proceedings of AAAI-93,
Washington, DC, 1993.
[VER83] Vere, S.A., Planning in Time: Windows and Durations
for Activities and Goals. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol.PAMI-5, No.3, May 1983, 246-276.

