
Proceedings of TIME-96 1

Gaining Efficiency and Flexibility in the Simple Temporal Problem

Amedeo Cesta Angelo Oddi

IP-CNR Dipartimento di Informatica e Sistemistica
National Research Council of Italy Università di Roma “La Sapienza”
Viale Marx 15, I-00137 Rome, Italy Via Salaria 113, I-00198 Rome, Italy
amedeo@pscs2.irmkant.rm.cnr.it oddi@assi.dis.uniroma1.it

Abstract
The paper deals with the problem of managing quan-

titative temporal networks without disjunctive con-
straints. The problem is known as Simple Temporal
Problem. Dynamic management algorithms are con-
sidered to be coupled with incremental constraint post-
ing approaches for planning and scheduling. A ba-
sic algorithm for incremental propagation of a new
time constraint is presented that is a modification of
the Bellman-Ford algorithm for Single Source Shortest
Path Problem. For this algorithm a sufficient condi-
tion for inconsistency is given based on cycle detection
in the shortest paths graph. Moreover, the problem
of constraint retraction from a consistent situation is
considered and properties for repropagating the net-
work locally are exploited. Some experiments are also
presented that show the usefulness of the properties.

1 Introduction
Knowledge-based architectures for planning and

scheduling based on constraint propagation, e.g. [5,
3, 8, 2], perform incremental constraint posting and
retraction on a current partial solution. A complete
plan is created by efficiently searching in partial plans
space, and, in other cases, it is adapted to new sit-
uations by partially removing parts of the solution.
A module for temporal constraint management that
supports plan space search and current solution main-
tenance should be extremely efficient because is called
into play at any modification (monotonic or not) of the
current plan. Such an efficiency is usually guaranteed
by restricting the expressive power of the temporal
representation. Usually the so called Simple Tempo-
ral Problem (STP) [7] is used that allows the repre-
sentation of binary quantitative constraints without
disjunction. In spite of the restriction of expressivity,
also for STP it results useful to consider how the ef-
ficiency of manipulation primitives may be improved.
In our research, we have been investigating possible

algorithms for managing temporal information that:
(a) allow dynamic changes of the constraint set for
both incremental constraint posting and retraction;
(b) exploit the localization of effects of any change
in a subnetwork of the whole constraint graph; (c) do
not compute the minimal network as done in [7] but
just check for consistency. A previous paper [1], in
the same line of [6], has concerned the specialization
of arc-consistency algorithm to the STP. The choice
of arc-consistency to propagate temporal constraints
was motivated by the good trade-off wrt space and
time complexity. In the same paper some properties
were given that were shown experimentally to improve
the performance of the algorithm in the average case.
The present paper contains a further step in the direc-
tion of gaining efficiency in the solution of the STP.
After presenting the essentials of STP (Section 2), it
presents dynamic algorithms based on the well known
Bellman-Ford algorithm for computing Single Source
Shortest Paths (Section 3). It also introduces (Sec-
tion 4) the concept of dependency that computes a
particular spanning tree on the constraint graphs that
allows the definitions of a sufficient condition for in-
consistency detection (Section 5) and an algorithm for
local constraint retraction (Section 6). Some experi-
ments (Section 7) show the usefulness of the proper-
ties.

2 The Temporal Problem
A Simple Temporal Problem is defined in [7] and in-

volves a set of temporal variables {X1, . . . , Xn}, hav-
ing continuous domains [lbi, ubi] and a set of con-
straints {aij ≤ Xj − Xi ≤ bij}, where aij ≥ 0,
bij ≥ 0 and aij ≤ bij . A special variable X0 is
added to represent the origin of the time (the begin-
ning of the considered temporal horizon) and its do-
main is fixed to [0, 0]. A solution of the STP is a tuple
(xi . . . xn) such that xi ∈ [lbi, ubi] and every constraint
aij ≤ Xj −Xi ≤ bij is satisfied. An STP is inconsis-

Proceedings of TIME-96 2

tent if no solution exists. In order to find the set of
possible values [lbi, ubi] for every variable Xi, a direct
constraint graph Gd(Vd, Ed) is associated to the STP,
where the set of nodes Vd represents the set of vari-
ables {X1, . . . , Xn} and the set of edges Ed represents
the set of constraints {aij ≤ Xj −Xi ≤ bij}.
Given a constraint aij ≤ Xj−Xi ≤ bij , we can rewrite
it as a pair of inequalities:
• Xj −Xi ≤ bij • Xi −Xj ≤ −aij

For every linear inequality Xj − Xi ≤ wij (with
wij equal to bij or −aij) we have an edge (i, j) in
Gd(Vd, Ed) labeled with the weight wij . Each path in
Gd from the node i to the node j, i = i0, i1 . . . im = j
induces between the variables Xj and Xithe constraint
Xj − Xi ≤ lij , where lij is the sum of weights along
the path, that is lij = w01+w12+ . . .+w(m−1)m. Con-
sidering the set of all paths between the nodes i and j,
these paths induce a constraint Xj −Xi ≤ dij , where
dij is the length of a shortest path between the nodes
i and j. Finally a cycle on the graph Gd is closed path
i = i0, i1 . . . im = i and a negative cycle is a cycle with
associated a negative length (lii < 0).
In [7] some useful properties of an STP are given and
reported in the following theorems.

Theorem 1 [7] A Simple Temporal Problem is con-
sistent iff Gd does not have negative cycles.

Defining d0i as the length of a shortest path on the
graph Gd from the origin 0 and the node i and di0 as
the length of a shortest path from the node i to the
origin 0 we can also have the other following theorem.

Theorem 2 [7] Given a consistent Simple Temporal
Problem, the set [lbi, ubi] of feasible values for the vari-
able Xi is the interval [−di0, d0i].

Theorem 2 shows that the Simple Temporal Problem
is a Shortest Paths Problem and precisely we have to
calculate two sets of shortest paths length: (a) the set
of shortest paths from the node 0 (that represent the
variable X0) to the nodes 1 . . . n; (b) and the set of
shortest paths from the nodes 1 . . . n to node 0.

3 An Algorithm for the STP
To solve the basic STP we use the Bellman-Ford

algorithm for the Single Source Shortest Paths Prob-
lem [4] giving an incremental version of the algo-
rithm named Propagation, which accepts as an in-
put the graph Gd and a new constraint Cij (where
Cij = aij ≤ Xj − Xi ≤ bij) and produces in output
a new set of feasible values [−di0, d0i] for every vari-
able Xi or a value fail in the case the new constraint
induces a inconsistent situation.
To understand the algorithm, shown in Figure 1, some

simple definitions are useful: given a node i of the
graph Gd we define EdgesOut(i) as the set of edges
which leave from the node i and EdgesIn(i) as the set
of edges which arrive to the node i. T and F are the
boolean constants True and False.
The algorithm has two differences wrt the standard
implementation on Bellman-Ford with a queue. First,
it calculates at the same time two sets of shortest dis-
tances. Second, the algorithm has an internal test
which detects negative cycles on the graph Gd which
contain the reference node X0. In addition, every node
u ∈ Vd has two boolean marks: LB(u) and UB(u).
This marks are useful in order to distinguish the two
types of propagation in the graph Gd, that is, respec-
tively UB(u) = T and LB(u) = T when a node is
modified by the propagation process for the distance
d0i and the distances di0. The Propagation calculates
the set of distances {d0i} between Steps 6 and 14 and
the set of distances {di0} between Steps 16 and 24.
This last section of the algorithm, in order to calcu-
lates the set of distances di0, (that is, the length of
the shortest paths on the graph Gd between the nodes
1 . . . n and the node 0) considers the set of direct edges
in Gd as oriented in the opposite direction. In this
way when a shortest path between the nodes 0 and i
is found, it is actually a shortest path in the opposite
direction. Finally, the tests at Steps 10 and 20 check
for negative cycles in the graph Gd when they contain
the node 0. The algorithm calculates also two short-
est path trees. In fact Steps 11 and 21 respectively
update the predecessor function pu, which represents
the shortest path tree of the distances {d0i} and the
predecessor function pl, which represents the shortest
path tree of the distances {di0}.

The complexity of the algorithm, as well known, is
O(EN). Where N and E are respectively the number
of nodes and the number of edges in Gd.

negative cycles

4 Focusing on Dependency
The temporal meaning of shortest path trees on

the Gd graph is simple. Every bound {d0i} (or {di0})
is induced by the set of temporal constraints in the
shortest paths between the origin 0 and the node i
(or between the node i the origin 0). The following
definitions are useful:

Definition 1 Let Gd a consistent distance graph.
The tree DTub of the shortest paths from the origin
0 to the nodes 1 . . . n is called Upper Bounds’ Depen-
dency Tree.

Definition 2 Let Gd a consistent distance graph.
The tree DTlb of the shortest paths from to the nodes

Proceedings of TIME-96 3

Propagation (Gd, Cij)
1. begin
2. Q← {i, j}
2a. LB(i) ::= T ; UB(i) ::= T
2b. LB(j) ::= T ; UB(j) ::= T
3. While Q 6= ∅ do begin
4. u← Pop(Q)
5. if UB(u) then
6. Foreach (u, v) ∈ EdgesOut(u) do
7. if d0u + wuv < d0v

8. then begin
9. d0v ::= d0u + wuv

10. if d0v + dv0 < 0 then exit(fail)
11. pu(v) ::= u
12. UB(v) ::= T
13. if v 6∈ Q then Q← Q ∪ {v}
14. end
15. if LB(u) then
16. Foreach (u, v) ∈ EdgesIn(u) do
17. if du0 + wvu < dv0

18. then begin
19. dv0 ::= du0 + wvu

20. if d0v + dv0 < 0 then exit(fail)
21. pl(v) ::= u
22. LB(v) ::= T
23. if v 6∈ Q then Q← Q ∪ {v}
24. end
25. LB(u) ::= F
26. UB(u) ::= F
27. end
28. end

Figure 1: Propagation algorithm

1 . . . n to origin 0 is called Lower Bounds’ Dependency
Tree.

If a given graph Gd is consistent then the trees DTub

and DTlb are always defined. In fact, without nega-
tive cycles, the distances {d0i} and {di0} are always
defined. In general, the trees DTub and DTlb may not
be single. In fact, the graph Gd may contain several
paths with the same length.

A relevant situation is verified when the graph Gd

contains at least a negative cycle. In this case, the
following Theorem holds.

Theorem 3 Give a distance graph Gd. If during the
update process of the Propagation algorithm the prede-
cessor function pu (pl) represents a graph containing
at least a cycle then the graph Gd is inconsistent.

Proof. We give the proof for the distances {d0i},
but an analogous proof can be given for the distances
{di0}. Suppose by hypothesis that during the update
process of the algorithm, a dependency path exists be-
tween the nodes i and j named p1 : i = i0, i1 . . . ir = j,
that is, a path such that pu(ik) = ik−1, with k =
1 . . . r. If we sum the weights along this path, we have
the following relation:

d0j − d0i = w01 + w12 + . . . + w(r−1)r. (1)

If successively the Propagation algorithm builds a
dependency path p2 : j = j0, j1 . . . js = j, we can write
the following relation:

dnew
0i − d0j = w01 + w12 + . . . + w(s−1)s. (2)

Where dnew
0i is the new value of the distances d0i

updated along the path p2. If we sum the relations 1
and 2 we obtain the length of the cycle lii:

lii = dnew
0i − d0i. (3)

Observing that the link of two paths p1 and p2 is
a cycle and dnew

0i < d0i, then the length lii is negative
and this proves the inconsistency of the graph Gd. 2

5 Cycle Detection
In order to use the property expressed by Theo-

rem 3 few changes are introduced in the Propagation
algorithm. Each edge (i, j) in the graph Gd have three
new boolean marks: NEW ((i, j)), LBP ((i, j)) and
UBP ((i, j)). The mark NEW is useful in order to
distinguish the new edges introduced in Gd, by the
new temporal constraint Cij . In fact, if in the graph
there is at least a negative cycle, then it must contain
at least one of the new edges introduced. Instead, the
two marks LBP ((i, j)) and UBP ((i, j)) are used to
check when a bound changes two times as explained
in the next Theorem 4:

Theorem 4 Let Gd a consistent distance graph and
Cij = aij ≤ Xj −Xi ≤ bij the new constraint added.
If during the propagation process the distance d0j (di0)
changes two times, then the constraint Cij is inconsis-
tent with the other constraints represented in Gd.

Proof. We give the proof for the distances {d0j},
but an analogous proof can be given for the distances
{dj0}. If the constraint represented by the edge (i, j)
changes the distance d0j a first time, this means every
new shortest paths built by the Propagation algorithm
will contain the node j. If the distances is changed a
second time, then the algorithm has built a closed de-
pendency path and for the Theorem 3 the graph Gd

is inconsistent. 2

Proceedings of TIME-96 4

Figure 2 shows the modified version of the algo-
rithm to check for cycle detection. It is interesting
to notice the complexity of the algorithm with cycles
detection is the same of the Propagation algorithm.
In fact, the only difference with the previous algo-
rithm is the check of the boolean marks NEW ((i, j))
LBP ((i, j)) and UBP ((i, j)).

Propagation-cd (Gd, Cij)
1. - 9. as in the Propagation algorithm
10a. if d0v + dv0 < 0
10b. then exit(fail)
10c. else if NEW ((u, v))
10d. then if UBP ((u, v))
10e. then exit(fail)
10f. else UBP ((u, v)) ::= T
11. - 19. as in the Propagation algorithm
20a. if d0v + dv0 < 0
20b. then exit(fail)
20c. else if NEW ((u, v))
20d. then if LBP ((u, v))
20e. then exit(fail)
20f. else LBP ((u, v)) ::= T
24. - 28. as in the Propagation algorithm

Figure 2: Differences introduced by cycle detection

the average time

6 Retraction of Temporal Constraints
from a Consistent Context

This paragraph deals with the problem of remov-
ing temporal constraints from a consistent graph Gd

(a graph without negative cycles). A basic way to
do this consists of: physically removing the constraint
from the graph Gd; setting every distance {d0i} and
{di0} to the value +∞; finally, running the Propaga-
tion algorithm on the whole graph.
As a matter of fact, this method is not very efficient.
In fact, when retracting a constraint from the time
map a lot of distances are likely not to be affected
by the removal. The dependency information may be
used to focalize the part of the network actually af-
fected by the removal and to run the Propagation al-
gorithm on that part of the graph.
To state same properties some definitions are useful.
Given an upper
bounds’ dependency tree DTub(VDTub

, EDTub
), each

sub-tree STub[i](VSTub
, ESTub

) of root i ∈ VDTub
is

called an Upper Bounds’ Dependency Sub-tree. Given
a lower bounds’ dependency tree DTlb(VDTlb

, EDTlb
)

every sub-tree STlb[i](VSTlb
, ESTlb

) of root i ∈ VDTlb

is called a Lower Bounds’ Dependency Sub-tree. Given
a a distance graph Gd(VGd

, EGd
) and a node i ∈ VGd

,
IN(i) is the set of start nodes of the edges which enter
in the node i (in the edge (j, i), j is the start node and
i is the end node). The next Proposition explains the
real effects of a removal constraints from a graph Gd

and it is a starting point to write a new algorithm to
remove temporal constraints from Gd.

Proposition 1 Let Gd be a consistent graph and
DTub(VDTub

, EDTub
) its upper bounds’ dependency

tree (DTlb(VDTlb
, EDTlb

) its lower bounds’ dependency
tree). The retraction of an edge (i, j) ∈ EDTub

((i, j) ∈ EDTlb
) modifies at most the distances of the

nodes k ∈ VSTub[j] (k ∈ VSTlb[j]). No distances are
modified when (i, j) 6∈ EDTub

((i, j) 6∈ EDTlb
).

Proof. We give the proof for the distances {d0i},
but an analogous proof can be given for the dis-
tances {di0}. The removal of an edge (i, j) ∈ EDTub

can’t modify a node’s distance {d0k} in the case k 6∈
VSTub

[k]. In fact the removal of (i, j) does not change
the shortest path between the origin 0 and the node k.
If (i, j) 6∈ EDTub

then no distance is changed because
no shortest path is changed. 2

The basic idea to write an efficient removal algo-
rithm is run the Propagation algorithm on the only
part of the Gd graph affected by the removal of the
constraint. The next Theorem formalize this concept
and explains how to initialize the Propagation algo-
rithm.

Theorem 5 Let Gd be a consistent distance graph.
To remove the effects of the constraint represented by
the edge (i, j) ∈ EDTub

((i, j) ∈ EDTlb
) the queue Q

of the Propagation algorithm and the set of distances
{d0i} ({di0}) in the graph Gd need of the following
initialize operations.

1. Q←
⋃

k∈VSTub
[j] IN(k) (Q←

⋃
k∈VSTlb

[j] IN(k))
2. d0u ::= +∞, u ∈ VSTub

[j] (du0 ::= +∞, u ∈ VSTlb
[j])

Proof. We give the proof for the distances {d0i},
but an analogous proof can be given for the distances
{di0}. By Proposition 1, for every node k ∈ VSTub

[j],
the distance {d0k} can change after the removal. The
Propagation algorithm have to rebuild the new short-
est paths for every node k ∈ VSTub

[j]. In order to
update these distances to the new values, it is neces-
sary to initialize them to the maximum possible value
+∞. In fact, it is not known what the new values will
be and the Propagation algorithm can only reduce the
bounds. In addition, we have to put in the queue Q all

Proceedings of TIME-96 5

the nodes of the constraints (i, j) which enter in the
set of updated nodes. That is, the nodes in the set⋃

k∈VSTub
[i] IN(k). In fact, these are the only nodes of

the graph from which can start the new shortest paths
of the nodes k ∈ VSTub

[j]. 2

The Remove algorithm is shown in Figure 3. It ac-
cepts as an input a graph Gd and a constraint Cij

which have to be removed from Gd and return the
graph Gd updated. At the step 13 is used the Re-
Propagation algorithm that is similar to the Propaga-
tion algorithm but accepts as an input a list of nodes
Q instead of an edge Cij . The parameter Q is used
as an initialization for the internal queue. Moreover
RePropagation does not check for the consistency of a
modification because the removal of one or more con-
straints, relax the STP holding the consistency prop-
erty.

Remove (Gd, Cij)
1. begin
2. Vm ← ∅
3. Q← ∅
4. if (i, j) ∈ EDTub

5. then Vm ← Vm ∪ VSTub
[j]

6. else if (j, i) ∈ EDTub

7. then Vm ← Vm ∪ VSTub
[i]

8. if (i, j) ∈ EDTlb

9. then Vm ← Vm ∪ VSTlb
[i]

7. else if (j, i) ∈ EDTlb

8. then Vm ← Vm ∪ VSTlb
[j]

9. Foreach u ∈ Vm do begin
10. Q← Q ∪ IN(u)
11. end
12. EGd

← EGd
− {(i, j), (j, i)}

13. RePropagation(Gd, Q)
14. end

Figure 3: Remove algorithm

7 Performance Evaluation
In order to get some realistic evaluations of the al-

gorithms, we have used a scheduling system described
in [3] and the time network generated by the sched-
uler. This scheduler solves instances of the Deadline
Job Shop Scheduling Problem (DJSSP) by incremen-
tal precedence constraint posting between the activi-
ties until any conflict in the use of resources is resolved.

In the DJSSP, each activity in a job can request
only one resource and a resource is requested only
once in a job. The sequence of resources requested
by the activities in a job is random. Every job has a

fixed release date and a due date. More details on the
random problem generator are described in [3].

All the evaluations are given as number of time
points explored by the algorithms. This choice is mo-
tivated from the fact that such number is both pro-
portional to the time of computation and machine in-
dependent.

We have built two different types of time networks
from the resolution of two different DJSSPs: the
8×8×8 (named P8) and the 10×10×10 (named P10),
where the first number indicate the number of jobs,
the second one the number of activities in a job and
the third one the number of resources. The data are
obtained running ten instances of each type of prob-
lem.

Table 1 shows the number of time points N , the
maximum number of distance constraints Emax and
maximum connectivity Cmax for each problem. The
connectivity is defined as the ratio between the num-
ber of distance constraints E and the number of time
points N . The value N is two times the number
of activities plus two (the origin point and horizon
point). The value Emax represents the maximum num-
ber of distance constraints which can be contained in
a time network associated to the solution of the in-
stance of the DJSSP. Emax is obtained by the sum
of the maximum values of the number of precedence
constraints for each resource and the number of con-
straints before the scheduling algorithm starts to find
a solution. Table 2 and Table 3 present the perfor-

Table 1: Number of time points and maximum con-
nectivity for the experimental time networks

Problem N Emax Cmax = Emax/N

P8 130 333 2.56
P10 202 661 3.27

mance of the Propagation algorithm when a modifi-
cation is either consistent or inconsistent respectively.
This values are shown as a function of the average
connectivity Av-conn, that is, every row of the table
represents the average value obtained in the interval
Av-conn ±0.25. In order to get several values of the
connectivity we have built a solution of an instance
of a DJSSP and progressively reduced the number
of edges and selected a time constraint Cij in ran-
dom way. In order to get the results showed in Ta-
ble 2, we have modified the distance constraint se-
lected Cij = aij ≤ Xj − Xi ≤ bij , in the constraint

Proceedings of TIME-96 6

Cij = aij + (dij − aij)U [0.05, 01] ≤ Xj − Xi ≤ bij .
Where U [x, y] represents a random value r with uni-
form distribution such that x ≤ r ≤ y and dij is min-
imal temporal distance between the nodes i and j on
the Gd graph. In this case, it is possible to make
a comparison between the number of nodes scanned
by the Propagation algorithm (Loc-prop values) and
the number of nodes scanned by an algorithm which
works from scratch (Scratch values). In order to get
the results showed in Table 3, we have induced an in-
consistent situation by modifying the constraint Cij in
the constraint dij(1 + U [0.05, 01]) ≤ Xj −Xi ≤ bij In
this other case, it is possible make a comparison be-
tween the number of nodes visited by the Propagation
algorithm which uses the property expresses by Theo-
rem 4 (Cycle-det values) and the number without the
previous property (No-cycle-det values).

Table 2: Incremental vs scratch propagation

Problem Av-conn Loc-prop Scratch
P8 1.25 38.76 652.67

1.75 52.33 1111.47
2.25 34.08 1641.19
2.75 39.51 2048.28

P10 1.25 51.42 1108.38
1.75 67.20 1928.54
2.25 64.34 2876.22
2.75 57.00 3817.79
3.25 63.92 4388.71

Table 3: Propagation with and without cycle detection

Problem Av-conn Cycle-det No-cycle-det
P8 1.25 3.02 114.42

1.75 2.92 77.30
2.25 2.47 43.87
2.75 1.92 9.75

P10 1.25 3.21 199.45
1.75 2.78 133.81
2.25 2.68 86.85
2.75 2.55 27.15
3.25 2.63 14.58

Finally, Table 4 presents the performance of the
Remove algorithm. These results are obtained in the
same way as the previous ones. First we have built

a solution; then we have reduced progressively the
number of time constraints by using the Remove algo-
rithm. In this case, is possible to make a comparison
between the average number of nodes scanned by the
Remove algorithm (Loc-rem values) and the number
of nodes scanned in the same case by a scratch al-
gorithm (Scratch-rem values). The scratch algorithm
eliminates first the constraint from the time map; then
puts all the bounds of the time points to the value +∞;
finally updates all the network.

Table 4: Incremental vs scratch remove

Problem Av-conn Loc-rem Scratch-rem
P8 1.25 2.37 652.67

1.75 35.34 1111.47
2.25 56.02 1641.19
2.75 96.35 2048.28

P10 1.25 2.69 1108.38
1.75 33.12 1928.54
2.25 55.06 2876.22
2.75 70.58 3817.79
3.25 156.97 4388.71

Acknowledgments
This research is partially supported by: ASI - Italian Space

Agency, CNR Special Project on Planning, CNR Committee 04
on Biology and Medicine.

References
[1] Cervoni, R., Cesta, A., Oddi, A., Managing Dynamic Tem-

poral Constraint Networks, Proceedings of the Second In-
ternational Conference on AI Planning Systems (AIPS94),
AAAI Press, 1994.

[2] Cesta, A., Oddi, A., DDL.1: A Formal Description of a
Constraint Representation Language for Physical Domains,
Proceedings of the 3rd European Workshop on Planning
(EWSP95), IOS Press, 1996.

[3] Cheng, C. Smith, S.,F., Generating Feasible Schedules un-
der Complex Metric Constraints, Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI-94),
AAAI Press, 1994.

[4] Cormen, T.H., Leierson, C.E., Rivest, R.L., Introduction to
Algorithms, MIT Press, 1990.

[5] Currie, K., Tate, A., O-Plan: the open planning architec-
ture, Artificial Intelligence, 52, 1991, 49-86.

[6] Davis, E., Constraint Propagation with Interval Labels, Ar-
tificial Intelligence, 32, 1987, 281-331.

[7] Dechter, R., Meiri, I., Pearl, J., Temporal constraint net-
works. Artificial Intelligence, 49, 1991, 61-95.

[8] Ghallab, M, Laruelle, H., Representation on Control in Ix-
TeT, a Temporal Planner, Proceedings of the Second In-
ternational Conference on AI Planning Systems (AIPS94),
AAAI Press, 1994.

