
Improving Robustness of Spacecraft Downlink

Schedules

Angelo OddiMember, IEEE,and Nicola Policella

Abstract

In the realm of scheduling problems different sources of uncertainty can invalidate the planned solutions:

unpredictability of activity behaviors, machine breakdowns, new activities to be served, and so on. In this paper

we are concerned with the generation of high quality downlink schedules in a spacecraft domain in presence of a

high degree of uncertainty. In particular, we refer to a combinatorial optimization problem calledMARS-EXPRESS

Memory Dumping Problem (MEX-MDP), which arose in the European Space Agency programMARS-EXPRESS. A

MEX-MDP consists in the generation of dumping commands to maximize the downloads of data sets from the satellite

to the ground. The domain is characterized with several kinds of constraints - such as, bounded on-board memory

capacities, limited communication windows over the downlink channels, deadlines and ready times imposed by the

payload requirements - and different sources of uncertainty - e.g., the amount of data generated at each scientific

observation or the channel data rate.

In this paper we tackle this problem by using a reduction of theMEX-MDP to a Max-Flow problem: the former

problem has a solution when the maximum flow in the latter equates the total amount of data to dump. Given this

reduction, we introduce a novel definition of solution robustness based on the utilization of the on-board memory, as

well as an iterative procedure to improve solution quality. The key idea behind this approach is that the lower the

peaksin memory utilization, the higher the ability cope with unexpectedly large amount of data.

Index Terms

scheduling, uncertainty, robustness, max-flow.

I. I NTRODUCTION

In a space domain, as well as many other applicative domains, the usefulness of a schedule is limited by its

brittleness. Though a schedule offers the potentials for optimized operations, it must in fact be executed exactly as

planned to achieve these potentials. In practice, this is generally made difficult in dynamic execution environments,

where unexpected events quickly invalidate the schedule’s predictive assumptions and the validity of the schedule’s

prescribed actions is continuously brought into question. The lifetime of a schedule tends to be very short, and hence

its optimizing advantages are generally not realized. In this paper, we refer to a combinatorial optimization problem

which arose in the European Space Agency programMARS-EXPRESS: the MARS-EXPRESS Memory Dumping

Angelo Oddi and Nicola Policella are with the Planning & Scheduling Team, (http://pst.istc.cnr.it). Institute for Cognitive Science and

Technology, Italian National Research Council (ISTC-CNR), I-00137 Rome, Italy (e-mail:{firstname.lastname}@istc.cnr.it).

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 1

Problem (MEX-MDP). The MEX-MDP problem involves the process of automating the memory dump operations

of both science and housekeeping data. Problems similar toMEX-MDP can arise in satellite domains such as the

ones described in [1], [2]. These works concern a set of Earth observation operations to be allocated in time under

a set of mandatory constraints such as: avoiding overlapping images, allowing sufficient transition times (orsetup

times), and allowing bounded instantaneous data flow and on-board limited recording capacity.

In this paper we model theMEX-MDP problem through a Max-Flow paradigm. Moreover, after recognizing

peaks of memory utilization as sources of brittleness in the final schedule, we increase the solution’s robustness

proposing, thanks to the Max-Flow reduction, an iterativelevelingalgorithm that explores different distributions of

the dumping operations byflatteningthe peaks in memory utilization.

The paper is organized as follows. We start describing theMARS-EXPRESSdomain, next we provide a formal

introduction of theMEX-MDP problem and a definition of solution’s robustness for this problem. Therefore, given

a MEX-MDP instance, a novel model based on the flow network paradigm is described. Thanks to this model, the

problem can be solved as a max-flow instance. Based on this result we present an iterative max-flow solver that

aims at improving the schedule’s robustness. Finally, the paper ends presenting an experimental evaluation and a

discussion of future developments that this method entails.

II. CONTEXT OF THEWORK

MARS-EXPRESSis one of the first missions of the ESA long-term Scientific Programme Horizons 2000 launched

on last June 2003. As it is well known, the space probe is currently orbiting around the Red Planet and operating

by using different scientific payloads. TheMARS-EXPRESSdomain is characterized by several kinds of constraints

- such as bounded on-board memory capacities, limited communication windows over the downlink channels,

deadlines and ready times imposed by the payload requirements - and different sources of uncertainty - e.g., the

amount of data generated at each scientific observation or the channel data rate. These constraints makeMARS-

EXPRESSprogram a challenging and interesting domain for research in automated problem solving [3], [4], [5].

In this work we refer to an abstractcore model of theMARS-EXPRESS Memory Dumping problem (MEX-

MDP), which allows us to introduce the Max-Flow model of the problem and to recognize one of the main source of

brittleness for a downlink schedule, i.e. peaks of data volumes stored in the on-board memory. In fact, generating high

quality schedules for spacecraft downlink scheduling problems can hardly be seen as a single objective optimization

problem, but rather as an optimization problem involving multiple, conflicting and non-commensurate criteria.

In the MEXAR project [3] we have started a research path in this direction with the main goal of defining a

Decision Support System (DSS) for solvingMEX-MDP [5]. Our current work is still focused on the same path

with the projectMEXAR2 which integrates the algorithms described in this paper in a larger algorithmic framework

within a DSS1. Within theMEXAR2 project the main idea is to integrate human strategic capabilities and automatic

problem solving algorithms to find solutions withthe right compromiseamong different and contrasting goals under

the full control of the mission planners.

1For further details please seehttp://mexar.istc.cnr.it .

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 2

VC 1

VC 0

Real−Time

Priority Scheme

SSMM Packet Stores

STORE

SSMM

DMS

TM Router
TM

TM

DUMP

TFG

TM

Fig. 1. On-board telemetry flow

In line with this approach, this work proposes a heuristic method to solveMEX-MDP which while it cannot

guarantee an optimal solution, yet it can be a veryflexible solving approach forMEX-MDP. In fact though we

could have formulated the wholeMEX-MDP as a monolithic multi-criteria mixed-integer programming (MIP)

problem, we preferred a heuristic solution, integrated in a larger DSS framework, where a mission planner can

drive the search for a dump plan by integrating his knowledge and experience and to build a solution which suits

the mission needs.

III. T HE MEMORY DUMPING PROBLEM

In a deep-space mission likeMARS-EXPRESSdata transmission to Earth represents a fundamental aspect. In this

domain, a space-probe continuously produces a large amount of data resulting from the activities of its payloads and

from on-board device monitoring and verification tasks (the so-calledhousekeepingdata). All these data should be

transferred to Earth during bounded downlink sessions. Moreover, in the case ofMARS-EXPRESSa single pointing

system is present. This implies that, during regular operations, the space-probe either points to Mars, to performs

payload operations, or points to Earth, to download the produced data. As a consequence, on-board data generally

require to be first stored in a Solid State Mass Memory (SSMM) and then transferred to Earth. Therefore, the main

problem to be solved consists in synthesizing sequences of spacecraft operations (dump plans) that are necessary to

deliver the content of the on-board memory during the available downlink windows. This allows to save upcoming

pieces of information without losing previously stored data and to optimize given objective functions [4].

The process of collecting data from a remote satellite like Mars-Express is part of a larger planning process

involving different stages and the interaction among several teams (Science Working Teams, Mission Analysis

Team, Flight Dynamics and Flight Control Teams). In addition, we can identify three phases for planning: long,

medium and short term planning, which respectively have durations of six months, one months and one week. Along

these phases the planning activities of the satellite are incrementally refined to a granularity of one week. Hence,

since some activities cannot be predicted one week in advance (e.g., dump commands for spacecraft operation

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 3

requests or flight dynamic request), avery short-term planis generated each one or two days, which includes the

latestcommands. This plan generally covers a period of two days and a dump plan is part of the set of commands

uplinked to the satellite.

In the following sections we describe our approach for solving theMEX-MDP problem (part of the very last phase

of the whole planning process). TheMARS-EXPRESS domain contains many kinds of constraints. For instance,

for the communication channel we have different transmission rates according to different periods. Additional

constraints arise from the specific use of the on-board memory: in fact, this memory is subdivided into different

memory banks (or packet stores) each with finite capacity; each piece of information can be stored in a set of one

or more packet stores. Moreover, data are stored in a sequential way while the packet stores are managed cyclically.

As a consequence, in case the memory is full, precious data might be overwritten (and then lost) by the newly

incoming data.

A. Basic Domain Entities

The Mars Express Memory Dumping Problem (MEX-MDP) has been initially formalized in a previous study

conducted by our group for the European Space Agency (see [3]). In the rest of this section we describe the main

features which characterize aMEX-MDP instance. Fig. 1 shows a sketch of theMARS-EXPRESSmodules that are

relevant toMEX-MDP. It shows the different telemetry (TM) data produced on-board and then stored in theSolid

State Mass Memory (SSMM)that is composed of different packet stores. Stored data are downloaded with different

dumps to Earth. The basic entities that are relevant to theMEX-MDP domain can be subdivided intoresources

and activities: resources represent domain subsystems able to give services, whereas activities model tasks to be

executed using resources over time.

Resources: MEX-MDP requires to model two different types of resources:

- Solid State Mass Memory (SSMM). The SSMM is used to store both science and housekeeping data. The

SSMM is subdivided into a set of devices namedpackets store, {pk1, pk2, . . . , pkn}, each one with a fixed

capacity,ci. Each packet store can be seen as a file of given maximum size and cyclically managed, that is,

previous pieces of information will be overwritten, and then lost, if the amount of stored data overflows the

packet store capacity. In particular, for each packet storepki it is possible to define a time functionusei(t)

that represents the amount of data memorized (that is, the difference between the stored and the dumped data)

in the packet storepki at the instantt. Given usei(t) it is possible to define for each packet storepki the

following conservative constraint:

0 ≤ usei(t) ≤ ci (1)

- Communication Channels. These represent the downlink connections to Earth for transmitting data. These

resources are characterized by a set of separated communication windowsCW = {cw1, cw2, . . . , cwnw} that

identify intervals of time in which downlink connections can be established. Each elementwj is a 3-tuple

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 4

〈rj , sj , ej〉, whererj is the available data rate during the time windowwj andsj andej are respectively the

start and the end-time of this window.

Activities: these describehow resources can be used. Each activityai is characterized by a fixed durationdi and

two variablessi andei which respectively represent its start-time and its end-time. Two basic types of activity are

relevant toMEX-MDP: store operationssti and memory dumpsmdi.

- Store Operation. Each store operation,sti, “instantaneously” stores, at its end-timeei, an amount of dataqi

in a defined packet store,pki.

- Memory Dump. Through a memory dump,mdi = 〈pki, si, ei, qj〉, an amountqi of stored data is transmitted

from the packet storepki to the ground station, during the interval[si, ei].

In the MEX-MDP domain two different kinds of data can be modeled by using store operationssti: the Payload

Operation Request(POR) and the housekeeping activities. The latter ones produce a continuous stream of data at

a given constant rate, calledContinuous Data Stream(CDS).

A Payload Operation Requestis a scientific observation which generates a set of data distributed over the available

packet stores. According to this model, for eachpori, the produced data are decomposed in a set of differentstore

operations such that,pori = {stij}. All of these store operations have the same durations and the same start-times,

that is, in our model the different data are stored in the different packets store at the same time.

On the other hand, aContinuous Data Streammodels an on-board process which works in “background” with

respect to the scientific activities. This process generates a flow of data with constant rate which has to be stored

in the SSMM. Examples of such data streams are the housekeeping data collected on a regular basis to control the

behavior of the on-board sub-systems.

The two data sources exhibit different characteristics: in fact, a POR is a time bounded activity, which stores data

at its end-time, whereas a CDS is a continuous data flow over the domain horizon. However, we choose to model

a CDS as a periodic sequence of store operations. In particular, given a CDS with a data flat rater, we define a

periodTcds, such that, for each instant of timetj = j · Tcds (j = 0, 1, 2, . . .) an activitystij stores an amount of

data equal tor · Tcds. In the particular case oft0 = 0 we suppose the amount of stored date is zero. Hence, we

can consider as input data for the problem just an equivalent set of store operations.

B. Problem Definition

Given the domain entities of aMEX-MDP instance, in this section we introduce the definition of solution, and

robustsolution for this problem. It is worth noting that our definitions refers to a domain abstraction that allows to

bring out the relevant aspects of the problem. In particular, we consider two levels of abstraction for the problem

domain.

- In a first level,Data Dump level, it is assessed the amount of data to dump from each packet store for each

time window.

- In a second level,Packet level, the final dump commands are generated from the first level results.

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 5

It is worth remarking that the second step can be automatically accomplished once a solution for the Data Dump

level is achieved (see Algorithm 1). For this reason along our research work we mainly have focused the attention

exclusively on producing solutions for the Data Dump level.

The problemdecompositiondescribed above is motivated by the complexity of the problem. In fact, this abstraction

allows us to focus on thedominantaspects of the problem, i.e. data quantities, packets store capacities, and dump

capability over the communication links, without considering the problem of generating dump commands.

A MEX-MDP instance is then composed of a set of scientific observations,POR = {por1, por2, . . . , pornp} and

a set of housekeeping productions,CDS = {cds1, cds2, . . . , cdsnc}, which are both modeled with a set of store

operations, and a time horizonH = [0,H]. A solution to a MEX-MDP instance is a set of dumping operations

S = {md1,md2, . . . , mdnd} such that:

- At each instant oft ∈ H, the amount of data stored in each packet storepki most not exceed the packet store

capacityci, i.e., overwriting is not allowed. See (1).

- The whole set of data must be “available” on ground within the considered temporal horizonH = [0,H],

except an amount of residual data for each packet storepki less or equal to the capacityci at t = H which

cannot be dumped withinH.

- Each dump activity,mdi, is executed within an assigned time windowwj which has a constant data raterj .

Moreover, dump operations cannot mutually overlap.

Robustness and Uncertainty. Though a solution should satisfy all the imposed constraints, a further goal is to

find high quality solutions with respect torobustnessproperties. Informally,a high quality plan delivers all the

stored data and is able to “adsorb” external modifications that might arise in a dynamic execution environment.

In fact, in the problem our work focuses upon, sources of uncertainty stem mainly from the unpredictability of

the scientific observations’ outcome. For instance, the data volume produced by the High Resolution Stereo Camera

(HRSC) - one of the most memory consuming payload - depends on the target and on the context. Thus the

impossibility to have an exact estimation of the memory usage of each request leads to producing brittle solutions.

In particular, in the case of theMEX-MDP problem our aim is to control the level of memory use in order

to avoid possible loss of data due to overwriting. One possibility for overwriting can occur when a greater than

expected volume of data has to be stored and there is not enough space in the packet store. For this reason we

define a robust solution a solution in which a specified amount of space of each packet store is preserved in order

to safeguard against overwriting. In other words, solution’s robustness is related to the concept ofdistance to the

overwriting state. Hence, we consider the peaks of data in a packet store close to its maximum capacity as sources

of schedule’s brittleness.

A possible way to increase solution’s robustness is toflat these peaks by finding a different distribution of the

dumping operations within the horizon[0,H]. Let use
(max)
i be the maximum value over the horizon[0,H] of

usei(t). We define the packet store utilizationαi = use
(max)
i /ci as the ratio between the maximum level of data

in the packet storepki and its capacityci. The robustness of a solutionS is defined as:

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 6

r(S) = max
i=1,...,n

{αi} = max
i=1,...,n

{use
(max)
i /ci} (2)

that is the maximum value of packet store utilization. A solutionS is optimal whenr(S) is minimal.

IV. A M AX -FLOW APPROACH FORMEX-MDP

In this section we recall a previous formalization of theMEX-MDP problem [4], and then we show as this

formalization matches with a flow network model. This allows in the next section to define a solving procedure for

the MEX-MDP problem based on a Max-Flow solver.

A. MEX-MDP formalization

The formalization is based on a partition of the temporal horizonH = [0,H] into a set of contiguous windows

W = {w1 = [t0, t1] | t0 = 0} ∪ {wj = (tj−1, tj] | j = 2 . . .m, ti ∈ H}, such that∪m
j=1wj = H. The partition is

realized upon consideration of significant events. Such events are assumed to be the start and the end of the temporal

horizon, the time instants where a memory reservation on a packet store is performed, and the time instants where

a change on the channel data rate is operated. It is assumed that such significant events take place at the windows’

edges. In this way inside the windowswj it is possible only to dump data and no store is executed. The key point

of the formalization is represented by the decision variables:

δij i = 1, . . . n, j = 1, . . . m, (3)

each defined in the integer domain[0, ci]. These represent the amount of data to dump from the packet storepki

within a window wj . To formally represent the domain constraints, for each packet storepki (i = 1, . . . , n) and

for each time windowwj (j = 1, . . . , m) some additional definitions are needed:

- dij , amount of data memorized in the packet storepki at tj . Where the variablesdi0 ≤ ci represent the initial

data level in the packet storepki;

- lij , maximal level (amount of data stored) allowed attj for the packet storepki, lij ∈ [0, ci];

- bj , maximal dumping capacity available inwj ;

We introduce two classes of constraints on the set of decision variablesδij . A first constraint captures the fact that

for each windowwj the difference between the amount of generated data and the amount of dumped data cannot

exceed the maximal imposed level in the windowlij (overwriting). Additionally, the dumped data cannot exceed

the generated data (overdumping). Thus, theconservative constraint(1) is redefined into the following inequalities:

j∑

k=0

dik −
j∑

k=1

δik ≤ lij (4)

j−1∑

k=0

dik −
j∑

k=1

δik ≥ 0 (5)

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 7

for i = 1, . . . , n andj = 1, . . . , m. The need of these two inequalities is justified by the example in Fig. 2, where

we represent the changing over time of the stored data volume for a generic packet storepki with respect to a

window wj . In particular, thestoreoperations are “impulsive actions” performed at the extremes (tj−1 and tj) of

wj , whereas the dumping operations are performedwithin the windowwj . As a consequence, the amount of data

dij , stored attj , cannot be dumped in the windowwj , because the data are not available duringwj . Hence, for

each windowwj , we have to check constraint (5) just beforetj (at t−j), and constraint (4) just aftertj (at t+j).

These constraints are necessary to avoid, respectively, to dump more data than available and to store more data

than allowed by the value oflij . A second class of constraints takes into account the dumping capacity imposed by

pki

li

tj-1 tjwj

δij

di(j-1) dij

pki

li

tj-1 tjwj

δij

di(j-1) dij

Fig. 2. The conservative constraints (4) and (5) have to be checked respectively att+j and t−j .

the communication channel. Letbj be the maximum amount of data that can be dumped duringwj , we have that:

0 ≤
n∑

i=1

δij ≤ bj j = 1, . . . , m (6)

thesedownlink constraintsstate that for each windowwj , is not possible to dump more data than the maximum

dumping capacitybj .

B. Flow Networks and the Max-Flow Problem

Before the introduction of the flow network model forMEX-MDP, in the following we briefly review the theory

behind the Max-Flow problem [6]. A flow networkG(V, E) is a direct graph whereV is a set of vertices andE

is a set of edges(u, v) with nonnegative capacityc(u, v) ≥ 0. The flow network has two special vertices: a source

s and sinkt. A flow in G is a integer-valued functionf : V × V → Z (we consider only integer-valued flows) that

satisfies the following three properties:

- capacity constraint: for allu, v ∈ V ,

f(u, v) ≤ c(u, v)

- skew symmetry: for allu, v ∈ V ,

f(u, v) = −f(v, u)

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 8

p22

s

t

b1

b1

l11

d10

b1

l12 l1(m−1)

ln1 ln2

d11

d20

l2(m−1)

d1m

d22

b2

b2

d12

l2m

l1m

b2
bm

d21

b1 b2 bm

bm
bm

d2m

p11

ch1 ch2 chm

p12 p1m

p2mp21

Fig. 3. A flow network forMEX-MDP.

- flow conservation: for allu ∈ V ∪ {s, t},
∑

v∈V

f(u, v) = 0

.

The quantityf(u, v) can be positive or negative, and it represents thenet flow from vertexu to vertexv. The

value of a flowf into the graphG, is defined as

f =
∑

v∈V

f(s, v),

that is the total flow out of the source. In the Max-Flow problem given a flow networkG, the goal is to find a flow

of maximum value from source to sink.

C. A Flow Network model forMEX-MDP

In this section we introduce a flow network to model aMEX-MDP instance. Fig. 3 shows an example of flow

network in the case of two packets store, however this example can be easily generalized to the case ofn packets

stores. There are four types of nodes:source, sink, packet-store nodespij (as explained below such nodes are

actuallymacro-nodes) and channel nodeschj .

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 9

The packet store nodepij is composed of two nodes (see Fig. 4) to represent the two conservative constraints

(4) and (5). The first nodep(1)
ij represents theoverdumpingconstraint (5), such that, within the windowwj =

[tj−1, tj] it is not possible to dump more data than the amount available attj−1. On the other hand, the node

p
(2)
ij , represents theoverwriting constraint (4), such that, the amount of residual data in the packet store after the

dumping operation over the windowwj , added to the amount of data stored attj (dij), is less or equal to the allowed

capacity of the packet storelij . In particular, on the nodep(1)
ij there are the following three flows:f(pi(j−1), pij),

f(pij , chj), andf(p(1)
ij , p

(2)
ij). The flow f(pi(j−1), pij) represents the residual amount of data onpki at tj−1, that

is,
∑j−1

k=0 dik −
∑j−1

k=1 δik.f(pij , chj) represents the amount of data dumped frompki during the time windowwj ,

that isδij = f(pij , chj). This edge is labeled withc(pij , chj) = bj to hold the constraintδij ≤ bj , that is,it is not

possible to dump more data than the channel capacitybj . Finally the flowf(p(1)
ij , p

(2)
ij) represents the amount of

residual data which remains in the packet store after the dumping over the windowwj .

We remark that we split the nodepij for the same motivation for which the inequality (1) has been split into the

inequalities (4) and (5). In fact, if we consider the flow balance on the nodep
(1)
ij we have that:

f(pi(j−1), pij)− f(pij , chj) = f(p(1)
ij , p

(2)
ij)

that can be rewritten as:
j−1∑

k=0

dik −
j−1∑

k=1

δik − δij = f(p(1)
ij , p

(2)
ij) ≥ 0

which coincides with the inequality (5). On the other hand, on the nodep
(2)
ij there are the following flows:

f(p(1)
ij , p

(2)
ij), f(s, pij), and f(pij , pi(j+1)), where the latter represents the residual amount of data

∑j
k=0 dik −

∑j
k=1 δik, and the flowf(s, pij) concerns the amount of data stored at the windowwj , which can be at most equal

to dij . Considering the flow balance onp(2)
ij we have that:

f(p(1)
ij , p

(2)
ij) + f(s, pij) = f(pij , pi(j+1))

that can be rewritten as:
j−1∑

k=0

dik + dij −
j∑

k=1

δik = f(pij , pi(j+1)) ≤ lij

which coincides with the inequality (4).

To represent the initial value of each packet store the arcs(s, p(1)
i0) are labeled with the valuedi0 whilst the arcs

(p(2)
im, t) are used to represent the overallresidualamount of data on the packets storepki at t = H. To synthesize

solutions which dump all the data on the ground these arcs are labeled withlim = 0.

Finally the flow through each channel nodechj represents thedownlink constraint over the time windowwj ,

m∑

i=1

f(pij , chj) =
m∑

i=1

δij = f(chj , t) ≤ bj

that is, the sum of data dumped from each packet store over the windowwj is less or equal the channel capacity

bj .

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 10

bj

pij

p
(2)
ijp

(1)
ij

lijli(j−1) lij

dij

Fig. 4. The internal structure of a macro-nodepij .

To conclude, a flow assignment to any edges is computed by applying a Max-Flow algorithm to the flow network

in Fig. 3. The result represents the maximum value of data which can be conveyed through the communication

channel. Thus aMEX-MDP will admit a solutionif and only if :

f(s, pij) = c(s, pij) = dij

for eachi = 1, . . . , n and j = 1, . . . , m. In other words, the formula above states that the maximum flow through

the network equates the whole data set stored in the different packets store.

Based on the model described above, in the next section two methods for approaching aMEX-MDP instance

are introduced: the first computes a solution, while the second aims at refining an initial solution for the sake of

robustness.

V. SOLVING METHODS

As mentioned above, to find a solution to aMEX-MDP problem is sufficient to apply a Max-Flow algorithm to

the associated flow network (see Fig. 3), next the set of dump commands can be obtained with a simple algorithm.

A solution of aMEX-MDP instance,mdp, exists if and only if the flow through each arc(s, pij) equates its capacity

value, that is,f(s, pij) = c(s, pij). In such a case we have that the set of valuesδij = f(pij , chj) is a solution

of mdp. There are different polynomial algorithms to solve the Max-Flow problem. Our current implementation is

based on the Edmond-Karp version of the Ford-Fulkerson method. The Edmond-Karp algorithm runs inO(|V ||E|2)
time, where|V | and |E| are respectively the number of nodes and the number of arcs in the flow network. Being

in our case|V | = O(mn) and |E| = O(mn), our current implementation runs inO(m3n3). An improvement in

the sense of CPU time can be achieved using more sophisticated max flow methods like the preflow-flush one [7].

The reader can find an essential survey on this issue in [6, chapter 26].

A. Finding a downlink schedule

We now describe how to build a downlink schedule. As mentioned above, a downlink scheduleS =

{md1,md2, . . . , mdnd} can be directly deducted on the basis of the valuesδij .

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 11

Algorithm 1 : Make a downlink schedule
input : a solutionδij , i = 1, . . . , n, j = 1, . . . , m

output: a scheduleS = {md1,md2, . . . ,mdnd}
begin1

S ← ∅2

c ← 13

t ← t04

foreach (windowwj , j = 1, . . . , m) do5

while ∃ a packet storepki: δij > 0 do6

Select a packet storepkc: δcj > 07

sc ← t8

ec ← sc + δcj/rj9

mdc = 〈pkc, sc, ec, δcj〉10

S = S ∪ {mdc}11

t ← ec12

c ← c + 113

t ← tj14

return S15

end16

Algorithm 1 takes as an input a solutionδij (i = 1, . . . , n, j = 1, . . . , m) and finds a downlink schedulingS by

iterating on the set of downlink windowswj = [tj−1, tj] (j = 1 . . . m) . For each windowwj , the algorithm selects

a packet storepkc until all the packet stores with variablesδcj > 0 are all selected. Within theWhile loop the packet

store selection (Step 7) is performed on the basis of an heuristic criterion. Many criteria are possible, for example

the shortest dump firstheuristic, which selects first the packet store with the smallest valueδcj0. A memory dump

operationmdc = 〈pkc, sc, ec, δcj〉 from a packet storepkc is obtained by adding its start timesc, end timeec. The

start time is calculated by means of a variablet (current time) which is incremented by the duration of the current

added memory dump (within the while loop) or set to the start of the next dump windowwj when all the packet

store withinwj are considered.

Example 1:To better explain our flow model and algorithm to convert a max-flow solution into a downlink

schedule, let us introduce the following example. Two payloads are part of the satellite, with ids AC and DM, such

that, each one stores its own data in an exclusive packet store which has the same id of the related payload. We

have three store operations on the packet stores AC and DM:

- por1 on AC which produces 50 Mb at t= 11:55:11;

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 12

50 60

100

120

150

70 140

120

150

AC

DM

channel

window 1 window 2

70
70

140 140

(a) Flow-Network model

50/50 60/60

100/100

50/120

30/150

70/70 140/140

0/120

0/150
70/70

0/70

110/140 30/140

(b) Max-Flow solution

Fig. 5. Flow network for Example 1

- por2 on DM which produces 100 Mb at t= 12:13:37;

- por3 on AC which produces 60 Mb at t= 15:33:12.

In the period taken into account we have two transmission windows:

- window1, from 12:20:12 to 12:43:32, rate= 50 Kbps;

- window2, from 17:25:50 to 18:59:10, rate= 25 Kbps.

Considering the duration (respectively 00:23:20 and 01:33:20) and the transmission rate of each window we

have a dump capacity of 70Mb and 140Mb respectively. Furthermore, the two packets store, AC and DM, have a

maximum capacity equal to 120Mb and 150Mb respectively.

Figure 5(a) shows a flow-network representation for the problem introduced so far. We emphasize with labeled

dashed rectangles the nodes of the network which belong to each packet store, to the transmission channel and to

each time window. As described above there are five types of edges:

- from thesourceto a “packet store” node (we omit the edge if the capacity/the dump value is zero) to represent

the amount of data to download;

- between nodes of the same packet store to represent the packet store availability;

- from a “channel” node and thesink to represent the channel capacity for each time window (in this case we

have 70Mb and 140Mb);

- from a “packet store” to a “channel” node to represent the data dumped from each packet store within each

time window.

- from a “packet store” node to the sink (of course these are labeled with the packet store capacity value) to

represent the amount of residual data for each packet store at the end of the planning horizon.

Figure 5(b) presents a max-flow solution to the network Fig. 5(a). The label of each edge denotes respectively

the flow through the edge and its capacity. We can observe on this solution the following points: – all the dump

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 13

data are downloaded, in fact there is no flow through the edges between the “packet store” nodes and the sink and

there is no possibility to increase the flow through the edges between the source and a “packet store” node; – there

are three dump operations from both the packets stores at each time window (see edges between “packet store”

and “channel” nodes).

It is worth noting that the Max-Flow approach allows to denote the number and the size of dump operation for

each time window. Given this solution it is straightforward to compute the exact dump commands by Algorithm 1.

For instance in this case we have the following list:

start stop PkS Dumped[Mb]

12:20:12 12:43:32 DM 70

17:25:50 17:45:50 DM 30

17:45:50 18:59:10 AC 110

Each item represents a different dump command and specifies the start and end-time of the dump, the packet store

involved and the amount of dumped data.

We conclude by remarking that given the results of the Max-Flow algorithm the list above is not unique. In this

example, we use theshortest dump firstheuristic, that is given a set of planned dumps within a specific transmission

window, we schedule them in increasing order w.r.t. the amount of dumped data. For this reason during the second

transmission window we first schedule the dump from the packet store DM (30 Mb instead of 110 Mb).

B. Iterative Leveling: Improving Robustness

In this section we present the iterative algorithm used to improve the robustness of an input solution. We recall

that in this domain we consider a solution as robust if the level of data over time of each packet store has nopeaks

close to its maximal capacity, so that there is always available memory for unexpectedly large amounts of data.

Hence, roughly speaking, we can removedangerouspeaks of data with alevelingprocedure which distributes the

“exceeding” data over the problem horizon. In particular, we propose an heuristic algorithm for improving robustness

which iteratively applies the three-steps cyclesolution analysis/problem-update/construction. Our approach somehow

resembles the concept of “feedback” widely used in Control Theory. Furthermore, a similar idea has been proposed

in the work [8] for the optimization of the makespan of scheduling problems.

The iterative method is presented with Algorithm 2 (Iterative-Leveling). This takes in input aMEX-MDP instance

mdp, and a parameterε ∈ (0, 1). The algorithm starts by finding an initial solution, represented in compact way by

δ = {δij : i = 1, . . . , n, j = 1, . . . ,m} (Step 2). If a solution is found,δ 6= ∅, the algorithm proceeds by initializing

all the elements of the vectorflatten[] to TRUE, whereflatten[i] = TRUE means that the maximum usage of the

packet storepki can be potentially lowered again.

The while loop (Steps 6-16) represents the core of the algorithm. In this loop the following three steps are

repeated:

1) analyze the current solution and select acritical packet storepkk, such that the percentage usage valueαk

is maximum (Step 7);

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 14

Algorithm 2 : Iterative-Leveling

input : a MEX-MDP instance,mdp, and a parameterε ∈ (0, 1)

output: a MEX-MDP solutionδ

begin1

δ ← SolveByMaxFlow(mdp)2

if δ 6= ∅ then3

for j = 1 to m do4

flatten[j] ← TRUE5

while ∃i|flatten[i] =TRUE do6

pkk ← SelectPacketStore()7

for j = 1 to m do8

lkj ← αk(1− ε)lkj9

δ′ ← SolveByMaxFlow(mdp)10

if δ′ = ∅ then11

flatten[k] ← FALSE12

for j = 1 to m do13

lkj ← lkj

αk(1−ε)14

else15

δ ← δ′16

return δ17

end18

2) for any time windowwj , the maximum level constraintlkj of the selected packet storepkk is reduced to the

valueαk(1− ε)lkj (Steps 8-9). In this way the maximum percentage usage is forced to be less thanαk;

3) solve the modified problem (Step 10). If this does not admit a solution then the “modified” packet storepki, is

labeled as not improvableflatten[i] = FALSE and the previous consistent situation is reloaded (Steps 13-14).

Otherwise the current best solution is updated (Step 16).

The aim of the three steps is to iteratively flatten the current critical packet store. These steps will be repeated until

there is at least one packet store which admit an improvement.

Example 2:To better explain the robustness concept as well as the iterative leveling algorithm, we consider again

the problem introduced in Example 1.

Figure 6 shows the profiles usage of both the packets store with respect the computed solution (see Fig. 5(b)).

Even though the two profiles are consistent with respect to the packet store capacity, we notice that for the AC

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 15

11:55:11

12:13:37

15:33:12

DM

AC 120Mb

150Mb

18:59:10

17:45:50
12:43:32

Fig. 6. Packet Store Profiles usage w.r.t. the solution in Fig. 5(b)

packet store we have a critical situation. At time t= 15:33:12 we have a peak of memory usage equal to more than

91% (we have an amount of stored data equal to 110Mb against a capacity of 120Mb). Regarding DM we instead

have a maximum use equal to66, 7%.

The criticality of this situation stems from the unpredictability of the operation outcome. In fact if the second

operation (at time t=15:33:12) produced more data, for instance 75Mb, we would encounter a data loss. For this

reason we have shown above that a possible approach may consist in reducing the capacity considered during the

Max-Flow algorithm, in order to anticipate some dumps from critical packets store.

In this case we can “robustify” the solution by reducing the resource capacity considered for the packet store AC.

For instance, Fig. 7 shows the result of our algorithm considering for AC a capacity of 100Mb instead of 120Mb

by means of an input parameterε = 1/6 (Note that the edge between the two “packet store” nodes associated with

AC is now labeled with the value 100). To avoid an inconsistent situation (w.r.t. the new constraints), a first dump

(50Mb) from AC is scheduled during the first transmission window. This allows to eliminate the previous peak. Of

course the amount of data dumped from DM during the same interval is reduced (in Fig. 7 the new flows value

are underlined). Given this solution a possible sequence of dump commands is the following:

start stop PkS Dumped[Mb]

12:20:12 12:26:52 DM 20

12:26:52 12:43:32 AC 50

17:25:50 18:05:50 AC 60

18:05:50 18:59:10 DM 80

Figure 8 presents the new profiles for the new solution. We have now that the maximum usage for AC is50%

while for DM is still 66, 7%. Therefore the new solution presents more robust characteristics than the one introduced

in the Example 1.

VI. EXPERIMENTAL EVALUATION

This section is dedicated to discuss the results of an empirical evaluation of the methods described above. These

have been evaluated using the benchmark sets defined during the study conducted for the European Space Agency

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 16

50/50 60/60

100/100

0/100

80/150

70/70 140/140

0/120

0/150
20/70

50/70

60/140 80/140

Fig. 7. Alternative, more robust, solution.

11:55:11

12:13:37

15:33:12

DM

AC 120Mb

150Mb

12:43:32
18:05:50

12:26:52
18:59:10

Fig. 8. Packet Store Profiles usage w.r.t. the solution in Fig. 7

[3]. In particular, in this section we present the results for one of these benchmark sets2, B5. This benchmark is

composed of 9 problems and has been generated on purpose in order to be critical with respect to, on one hand,

the competition among the packet stores for the same channel bandwidth, and, on the other hand with respect to

the limited capacity of the packet stores relatively to the amount of generated data. In particular, these problems

are generated with regard to the following setting for the domain parameters: 1 science housekeeping packet store,

11 science packet stores, 8 payloads and a channel data rate of 228 Kbps.

Figure 9 shows the results with respect to the solution’s robustness (see Section III-B): the application of the

Iterative-Levelingalgorithm increases the quality of the final solution. In particular, the graph labeled withINIT

represents the robustness of a solution generated with one run of the solving algorithm based on the Max-Flow

reduction, while the curve labeled withLEV represents the robustness values after the application of theIterative-

Levelingalgorithm described in Section V withε = 0.02. Figure 9 shows how for some problems the robustness

is improved of25%, that is, the maximum utilization of a packet store (2) is lowered from100% to 75%.

In addition, a further analysis can be done considering the average maximum utilization of the packet stores, that

2The benchmark sets are available at the address:http://mexar.istc.cnr.it .

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 17

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

ro
bu

st
ne

ss
 (

%
)

problem instance

INIT
LEV

INIT-AVG
LEV-AVG

Fig. 9. Performance on benchmark B5.

is, the average of the valuesuse
(max)
i /ci over the set of the actually used packet stores. The two curves,INIT-AVG

and LEV-AVG in Fig. 9 represent this value respectively before and after the application of theIterative-Leveling

algorithm. Clearly, the main effect of the leveling algorithm is to create a different distribution of the dumping

operations over the horizon in order to removedangerousdata peaks. Regarding the CPU-time, all the algorithms

presented in this paper are implemented in Java on an Athlon 1800 Mhz machine, and the average CPU-times are

respectively0.8 seconds to generate an initial solution and21.8 seconds to improve its robustness.

VII. M ISSION OPERATIVE ENVIRONMENT AND ROBUSTNESS

The algorithms described in this paper are part of the software systemMEXAR2, a Decision Support System

(DSS) developed within a project work supported by ESA and targeted for solving theMEX-MDP. In theMEXAR2

project the main idea is to integrate human strategic capabilities and automatic problem solving algorithms to find

solutions with theright compromiseamong different and contrasting goals, under the full control of the mission

planners. As introduced above, in this work we refer to an abstractcore model of MEX-MDP, which allows us

to introduce the Max-Flow model of the problem and to recognize one of the main source of brittleness for a

downlink schedule, i.e. peaks of data volumes stored in the on-board memory. However, in the realm of the mission

operative environment, a mission planner have to take into account a set of additional constraints forMEX-MDP

with respect to those modeled in Section III-B. Under this additional set of constraints, theMEX-MDP problem

could be formulated as a monolithic multi-criteria mixed integer programming (MIP) problem, but we prefered a

heuristic approach for its solution, like the Max-Flow based one. In fact, this approach allows a finer control of the

search for dump plans by adopting different heuristics for the selection of augmenting paths within the Max-Flow

algorithm, such that this flexibility can be exploited for a smoother integration of the mission planner choices in

the search process and to cope with the following further additional constraints forMEX-MDP:

- in general, aMEX-MDP admits many solutions, however from a practical point of view, the only useful ones

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 18

are the solutions where each dump operation starts as soon as possible. In other words, useful solutions are

the ones where the variablesδij greater than zero areshifted toward time origin. These kind of solutions can

be easily obtained with a max-flow algorithm by generating the augmenting path through the channel nodes

in increasing order of indexes.

- When the problem isover-constrained, that is, no solution exists and part of the data is lost (this is an extreme

situation in theMARS-EXPRESS domain, but possible). The solving procedure must return in every case a

solution, whichsacrificessome data. In this case the solution provided by the max-flow is still useful, even

if, some data is lost. Also, in this case it is possible for a user to select which data to sacrifice by driving the

search of augmenting paths within the max-flow algorithm.

- Dump commands have a minimal durations (e.g., 30 seconds) and it does not make sense to have commands

with durations of few seconds. In general, planfragmentationmust be avoided, that is plans containing many

commands with small durations interleaving dump commands from several packet stores.

- Packet stores have priorities. These priority values are considered also when some data must be renounced.

- For some packet storespreemptionis not allowed, hence it is not possible to dump their content over a sequence

of dump commands and the operation must be accomplished in one step.

Furthermore, we would like to remind as the solution ofMEX-MDP is part of a larger decision process involving

several stages of planning (long, medium and short-term planning) the interaction of many working teams. Then,

at this level of the decision chain, the role of a DSS is to complete and make executable a set of decisions already

taken in an abstract way. For instance, at the end of each mission day, the real volumes of data in the set of

packet stores are reported to the mission planner, such that a new downlink schedule can be possibly re-synthesized

accordingly. This daily procedure can be seen as aclosed-loopplanning, which reacts to unexpected peaks of data

by anticipating the dump operations (this is the main effect of reducing the capacity of a packet stores) in the

packet stores which exhibit this kind of criticality. In this situation a robust solution may play a fundamental role

in order to avoid plan regeneration and/or data losses.

VIII. C ONCLUSIONS

During a project work for the European Space Agency a specific scheduling problem arose: the so calledMARS-

EXPRESSMemory Dumping Problem orMEX-MDP [3], [4], [5].

In this paper we face this problem in a novel way by a reduction of theMEX-MDP to a Max Flow problem [6].

The algorithm described in this work is currently integrated in a larger algorithmic framework within a Decision

Support System (DSS) targeted to deliver high quality solutions to theMEX-MDP where the main goal is to avoid

data overwriting, while taking into account other quality measures, like data priorities-based objective functions or

the length (number of commands) of a dump plan. Max-Flow reduction can be intuitive considering that a solution

to the dumping problem can be seen as a flow from the satellite to the ground, such that the problem has a solution

when the maximum flow equates the total amount of data to dump. Given this reduction, a definition of solution’s

robustness is proposed together with an iterative procedure to improve the robustness of a solution, the underlying

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 19

idea being that the lower the memory utilization the higher the ability to face unexpectedly larger amount of data.

Experimental data confirm our thesis: we can effectively removedangerouspeaks of data and distribute them over

the problem horizon by using theIterative-Levelingprocedure. We remark that even though theMEX-MDP problem

comes from a specific study, its features are quite general and many of the conclusions reported in this paper can

be extended to other spacecraft domains which adopt the same model of on-board memory.

ACKNOWLEDGMENTS

The MEX-MDP has been studied in a study conducted for ESA from November 2000 to July 2002 (contract No.

14709/00/D/IM). The Max-Flow approach is currently used in the framework of the projectMEXAR2 supported

by ESA (contract No. 18893/05/D/HK(SC)).

The authors would like to thank their colleagues Amedeo Cesta and Riccardo Rasconi for their precious advices

and suggestions.

REFERENCES

[1] G. Verfaillie and M. Lemaitre, “Selecting and Scheduling Observations for Agile Satellites: Some Lessons from the Constraint Reasoning

Community Point of View,” inPrinciples and Practice of Constraint Programming,7th International Conference, CP 2001, ser. Lecture

Notes in Computer Science, T. Walsh, Ed., no. 2239. Springer, 2001, pp. 670–684.

[2] E. Bensana, M. Lemaitre, and G. Verfaillie, “Earth Observation Satellite Management,”Constraints: An International Journal, vol. 4, no. 3,

pp. 293–299, 1999.

[3] A. Cesta, A. Oddi, G. Cortellessa, and N. Policella, “Automating the Generation of Spacecraft Downlink Operations inMARS EXPRESS:

Analysis, Algorithms and an Interactive Solution Aid,” ISTC-CNR [PST], Italian National Research Council, Tech. Rep. MEXAR-TR-02-10

(Project Final Report), July 2002.

[4] A. Oddi, N. Policella, A. Cesta, and G. Cortellessa, “Generating High Quality Schedules for a Spacecraft Memory Downlink Problem,”

in Principles and Practice of Constraint Programming,9th International Conference, CP 2003, ser. Lecture Notes in Computer Science,

F. Rossi, Ed., no. 2833. Kinsale, Ireland: Springer, 29 September - 3 October 2003, pp. 570–584.

[5] G. Cortellessa, A. Cesta, A. Oddi, and N. Policella, “User Interaction with an Automated Solver. The Case of a Mission Planner,”PsychNology

Journal, vol. 2, no. 1, pp. 140–162, 2004.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to Algorithms,Second Edition. MIT Press, 2001.

[7] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem,”Journal of ACM, vol. 35, no. 4, pp. 921–940, October

1988.

[8] D. Joslin and D. Clements, ““Squeaky Wheel” Optimization,”Journal of Artificial Intelligence Research, vol. 10, pp. 353–373, 1999.

September 2005 DRAFT

