Improving Robustness of Spacecraft Downlink

Schedules

Angelo OddiMember, IEEEand Nicola Policella

Abstract

In the realm of scheduling problems different sources of uncertainty can invalidate the planned solutions:
unpredictability of activity behaviors, machine breakdowns, new activities to be served, and so on. In this paper
we are concerned with the generation of high quality downlink schedules in a spacecraft domain in presence of a
high degree of uncertainty. In particular, we refer to a combinatorial optimization problem ¢Aled-EXPRESS
Memory Dumping ProblemM EX-MDP), which arose in the European Space Agency progkdars-EXPRESS A
MEX-MDP consists in the generation of dumping commands to maximize the downloads of data sets from the satellite
to the ground. The domain is characterized with several kinds of constraints - such as, bounded on-board memory
capacities, limited communication windows over the downlink channels, deadlines and ready times imposed by the
payload requirements - and different sources of uncertainty - e.g., the amount of data generated at each scientific
observation or the channel data rate.

In this paper we tackle this problem by using a reduction ofNMex-MbDP to a Max-Flow problem: the former
problem has a solution when the maximum flow in the latter equates the total amount of data to dump. Given this
reduction, we introduce a novel definition of solution robustness based on the utilization of the on-board memory, as
well as an iterative procedure to improve solution quality. The key idea behind this approach is that the lower the
peaksin memory utilization, the higher the ability cope with unexpectedly large amount of data.

Index Terms

scheduling, uncertainty, robustness, max-flow.

I. INTRODUCTION

In a space domain, as well as many other applicative domains, the usefulness of a schedule is limited by its
brittleness. Though a schedule offers the potentials for optimized operations, it must in fact be executed exactly as
planned to achieve these potentials. In practice, this is generally made difficult in dynamic execution environments,
where unexpected events quickly invalidate the schedule’s predictive assumptions and the validity of the schedule’s
prescribed actions is continuously brought into question. The lifetime of a schedule tends to be very short, and hence
its optimizing advantages are generally not realized. In this paper, we refer to a combinatorial optimization problem

which arose in the European Space Agency proghaRsS-EXPRESS the MARS-EXPRESS Memory Dumping

Angelo Oddi and Nicola Policella are with the Planning & Scheduling Team, (http://pst.istc.cnr.it). Institute for Cognitive Science and
Technology, Italian National Research Council (ISTC-CNR), 1-00137 Rome, ltaly (e-fiimitname.lastnamje@istc.cnr.it).

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 1

Problem MEx-MDP). The MEX-MDP problem involves the process of automating the memory dump operations

of both science and housekeeping data. Problems similkte®-MDP can arise in satellite domains such as the
ones described in [1], [2]. These works concern a set of Earth observation operations to be allocated in time under
a set of mandatory constraints such as: avoiding overlapping images, allowing sufficient transition tisetsigor
times), and allowing bounded instantaneous data flow and on-board limited recording capacity.

In this paper we model th&1Ex-MDP problem through a Max-Flow paradigm. Moreover, after recognizing
peaks of memory utilization as sources of brittleness in the final schedule, we increase the solution’s robustness
proposing, thanks to the Max-Flow reduction, an iteratexesling algorithm that explores different distributions of
the dumping operations bijatteningthe peaks in memory utilization.

The paper is organized as follows. We start describingMieRs-ExPRESSdomain, next we provide a formal
introduction of theMEx-MDP problem and a definition of solution’s robustness for this problem. Therefore, given
a MEx-MDP instance, a novel model based on the flow network paradigm is described. Thanks to this model, the
problem can be solved as a max-flow instance. Based on this result we present an iterative max-flow solver that
aims at improving the schedule’s robustness. Finally, the paper ends presenting an experimental evaluation and a

discussion of future developments that this method entails.

Il. CONTEXT OF THEWORK

MARS-EXPRESSiIs one of the first missions of the ESA long-term Scientific Programme Horizons 2000 launched
on last June 2003. As it is well known, the space probe is currently orbiting around the Red Planet and operating
by using different scientific payloads. TiARS-EXPRESSdomain is characterized by several kinds of constraints
- such as bounded on-board memory capacities, limited communication windows over the downlink channels,
deadlines and ready times imposed by the payload requirements - and different sources of uncertainty - e.g., the
amount of data generated at each scientific observation or the channel data rate. These constraiMtarsake
ExPRESsprogram a challenging and interesting domain for research in automated problem solving [3], [4], [5].

In this work we refer to an abstracbre model of theMARS-EXPRESS Memory Dumping problem NI EX-

MDP), which allows us to introduce the Max-Flow model of the problem and to recognize one of the main source of
brittleness for a downlink schedule, i.e. peaks of data volumes stored in the on-board memory. In fact, generating high
quality schedules for spacecraft downlink scheduling problems can hardly be seen as a single objective optimization
problem, but rather as an optimization problem involving multiple, conflicting and non-commensurate criteria.

In the MEXAR project [3] we have started a research path in this direction with the main goal of defining a
Decision Support System (DSS) for solvibdex-MDP [5]. Our current work is still focused on the same path
with the projectM EXARZ2 which integrates the algorithms described in this paper in a larger algorithmic framework
within a DSS. Within the MEXAR2 project the main idea is to integrate human strategic capabilities and automatic
problem solving algorithms to find solutions withe right compromisamong different and contrasting goals under

the full control of the mission planners.

IFor further details please séétp://mexar.istc.cnr.it

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 2

SSMM Packet Stores

DUMP % T STORE

Priority Scheme

,,, ™
DMS /

- o ™
VC1 TEG Real-Time @

™

Fig. 1. On-board telemetry flow

In line with this approach, this work proposes a heuristic method to ddlee-MbDP which while it cannot
guarantee an optimal solution, yet it can be a viexible solving approach foMeEx-MDP. In fact though we
could have formulated the wholBIEX-MDP as a monolithic multi-criteria mixed-integer programming (MIP)
problem, we preferred a heuristic solution, integrated in a larger DSS framework, where a mission planner can
drive the search for a dump plan by integrating his knowledge and experience and to build a solution which suits

the mission needs.

I[Il. THE MEMORY DUMPING PROBLEM

In a deep-space mission likdARS-ExXPRESSdata transmission to Earth represents a fundamental aspect. In this
domain, a space-probe continuously produces a large amount of data resulting from the activities of its payloads and
from on-board device monitoring and verification tasks (the so-céltetgsekeepingata). All these data should be
transferred to Earth during bounded downlink sessions. Moreover, in the chderd-EXPRESSa single pointing
system is present. This implies that, during regular operations, the space-probe either points to Mars, to performs
payload operations, or points to Earth, to download the produced data. As a consequence, on-board data generally
require to be first stored in a Solid State Mass Memory (SSMM) and then transferred to Earth. Therefore, the main
problem to be solved consists in synthesizing sequences of spacecraft opedatiopsp{any that are necessary to
deliver the content of the on-board memory during the available downlink windows. This allows to save upcoming
pieces of information without losing previously stored data and to optimize given objective functions [4].

The process of collecting data from a remote satellite like Mars-Express is part of a larger planning process
involving different stages and the interaction among several teams (Science Working Teams, Mission Analysis
Team, Flight Dynamics and Flight Control Teams). In addition, we can identify three phases for planning: long,
medium and short term planning, which respectively have durations of six months, one months and one week. Along
these phases the planning activities of the satellite are incrementally refined to a granularity of one week. Hence,

since some activities cannot be predicted one week in advance (e.g., dump commands for spacecraft operation

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 3

requests or flight dynamic request)yvary short-term plans generated each one or two days, which includes the
latestcommands. This plan generally covers a period of two days and a dump plan is part of the set of commands
uplinked to the satellite.

In the following sections we describe our approach for solvingMiex-M DpP problem (part of the very last phase
of the whole planning process). THdARS-EXPRESSdomain contains many kinds of constraints. For instance,
for the communication channel we have different transmission rates according to different periods. Additional
constraints arise from the specific use of the on-board memory: in fact, this memory is subdivided into different
memory banks (or packet stores) each with finite capacity; each piece of information can be stored in a set of one
or more packet stores. Moreover, data are stored in a sequential way while the packet stores are managed cyclically.
As a consequence, in case the memory is full, precious data might be overwritten (and then lost) by the newly

incoming data.

A. Basic Domain Entities

The Mars Express Memory Dumping Problet €x-MDP) has been initially formalized in a previous study
conducted by our group for the European Space Agency (see [3]). In the rest of this section we describe the main
features which characterizeMEX-MDP instance. Fig. 1 shows a sketch of thiears-ExXPRESSmModules that are
relevant toMEX-MDP. It shows the different telemetry (TM) data produced on-board and then stored 8vlige
State Mass Memory (SSMMHat is composed of different packet stores. Stored data are downloaded with different
dumps to Earth. The basic entities that are relevant toMiEx-MDpP domain can be subdivided intesources
and activities resources represent domain subsystems able to give services, whereas activities model tasks to be

executed using resources over time.

ResourcesMEX-MDP requires to model two different types of resources:

- Solid State Mass Memory (SSMM)he SSMM is used to store both science and housekeeping data. The
SSMM s subdivided into a set of devices nanpatkets store{pki, pks,...,pk,}, each one with a fixed
capacity,c;. Each packet store can be seen as a file of given maximum size and cyclically managed, that is,
previous pieces of information will be overwritten, and then lost, if the amount of stored data overflows the
packet store capacity. In particular, for each packet spéteit is possible to define a time functiomse;(t)
that represents the amount of data memorized (that is, the difference between the stored and the dumped data)
in the packet storek; at the instant. Given use;(t) it is possible to define for each packet stoie the

following conservative constraint:

0 < wuse;(t) < ¢ (1)

- Communication ChannelsThese represent the downlink connections to Earth for transmitting data. These
resources are characterized by a set of separated communication widows {cw1, cws, ..., cwy,, } that

identify intervals of time in which downlink connections can be established. Each elemeista 3-tuple

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 4

(rj,s;,e;j), wherer; is the available data rate during the time windew ands; ande; are respectively the

start and the end-time of this window.

Activities these describbow resources can be used. Each activityis characterized by a fixed duratiel and
two variabless; ande; which respectively represent its start-time and its end-time. Two basic types of activity are

relevant toM EX-MDP: store operationst; and memory dumpsid;.

- Store OperationEach store operationt;, “instantaneously” stores, at its end-tirag an amount of datg;
in a defined packet storek;.
- Memory Dump Through a memory dumpnd, = (pk;, s;, e;, ¢;), an amouniy; of stored data is transmitted
from the packet storgk; to the ground station, during the intenjal, e;].
In the MEX-MDP domain two different kinds of data can be modeled by using store operatianthe Payload
Operation RequesPOR) and the housekeeping activities. The latter ones produce a continuous stream of data at
a given constant rate, callggiontinuous Data StreafCDS).

A Payload Operation Requessta scientific observation which generates a set of data distributed over the available
packet stores. According to this model, for eaeh;, the produced data are decomposed in a set of diffesten
operations such thapor; = {st;;}. All of these store operations have the same durations and the same start-times,
that is, in our model the different data are stored in the different packets store at the same time.

On the other hand, €ontinuous Data Streammodels an on-board process which works in “background” with
respect to the scientific activities. This process generates a flow of data with constant rate which has to be stored
in the SSMM. Examples of such data streams are the housekeeping data collected on a regular basis to control the
behavior of the on-board sub-systems.

The two data sources exhibit different characteristics: in fact, a POR is a time bounded activity, which stores data
at its end-time, whereas a CDS is a continuous data flow over the domain horizon. However, we choose to model
a CDS as a periodic sequence of store operations. In particular, given a CDS with a data ftatwatdefine a
period Tc4,, such that, for each instant of tinte = j - T.qs (j =0,1,2,...) an activity st;; stores an amount of
data equal ta- - T.4s. In the particular case aofy, = 0 we suppose the amount of stored date is zero. Hence, we

can consider as input data for the problem just an equivalent set of store operations.

B. Problem Definition

Given the domain entities of MEX-MDP instance, in this section we introduce the definition of solution, and
robustsolution for this problem. It is worth noting that our definitions refers to a domain abstraction that allows to
bring out the relevant aspects of the problem. In particular, we consider two levels of abstraction for the problem
domain.

- In a first level,Data Dump levelit is assessed the amount of data to dump from each packet store for each

time window.

- In a second levelPacket levelthe final dump commands are generated from the first level results.

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 5

It is worth remarking that the second step can be automatically accomplished once a solution for the Data Dump
level is achieved (see Algorithm 1). For this reason along our research work we mainly have focused the attention
exclusively on producing solutions for the Data Dump level.

The problentdecompositiomlescribed above is motivated by the complexity of the problem. In fact, this abstraction
allows us to focus on thdominantaspects of the problem, i.e. data quantities, packets store capacities, and dump
capability over the communication links, without considering the problem of generating dump commands.

A MEX-MDP instance is then composed of a set of scientific observatR@sR = {pori, pors, ..., por,,} and
a set of housekeeping productiof)S = {cdsy,cdsa, ..., cds,.}, Which are both modeled with a set of store
operations, and a time horizoH = [0, H]. A solutionto a MEX-MDP instance is a set of dumping operations
S = {md;, mda,...,md,q} such that

- At each instant of € H, the amount of data stored in each packet stdremost not exceed the packet store
capacityc;, i.e., overwriting is not allowed. See (1).

- The whole set of data must be “available” on ground within the considered temporal hé{izen0, H],
except an amount of residual data for each packet gtbrdess or equal to the capacity att = H which
cannot be dumped withifi.

- Each dump activitymd;, is executed within an assigned time windawy which has a constant data ratg

Moreover, dump operations cannot mutually overlap.

Robustness and UncertaintyThough a solution should satisfy all the imposed constraints, a further goal is to
find high quality solutions with respect toobustnessproperties. Informallya high quality plan delivers all the
stored data and is able to “adsorb” external modifications that might arise in a dynamic execution environment

In fact, in the problem our work focuses upon, sources of uncertainty stem mainly from the unpredictability of
the scientific observations’ outcome. For instance, the data volume produced by the High Resolution Stereo Camera
(HRSC) - one of the most memory consuming payload - depends on the target and on the context. Thus the
impossibility to have an exact estimation of the memory usage of each request leads to producing brittle solutions.

In particular, in the case of th®1Ex-MDP problem our aim is to control the level of memory use in order
to avoid possible loss of data due to overwriting. One possibility for overwriting can occur when a greater than
expected volume of data has to be stored and there is not enough space in the packet store. For this reason we
define a robust solution a solution in which a specified amount of space of each packet store is preserved in order
to safeguard against overwriting. In other words, solution’s robustness is related to the condisparafe to the
overwriting state Hence, we consider the peaks of data in a packet store close to its maximum capacity as sources
of schedule’s brittleness.

A possible way to increase solution’s robustness iflabthese peaks by finding a different distribution of the
dumping operations within the horizd0, H]. Let use{™*) be the maximum value over the horizdi H] of
use;(t). We define the packet store utilization = usegm““ /c; as the ratio between the maximum level of data

in the packet storgk; and its capacity;. The robustness of a solutigh is defined as:

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 6

r(S) = _max {a;} = _mnax {usel(-max)/ci} (2)

that is the maximum value of packet store utilization. A solutibis optimal when(.S) is minimal.

IV. AM Aax-FLow APPROACH FORMEX-MDP

In this section we recall a previous formalization of tNeEX-MDP problem [4], and then we show as this
formalization matches with a flow network model. This allows in the next section to define a solving procedure for

the MEX-MDP problem based on a Max-Flow solver.

A. MEX-MDP formalization

The formalization is based on a partition of the temporal horizbs- [0, H] into a set of contiguous windows
W = {w; = [to,t1] [to = 0} U{w; = (tj_1,t;] | j = 2...m,t; € H}, such thatU7,w; = H. The partition is
realized upon consideration of significant events. Such events are assumed to be the start and the end of the temporal
horizon, the time instants where a memory reservation on a packet store is performed, and the time instants where
a change on the channel data rate is operated. It is assumed that such significant events take place at the windows’
edges. In this way inside the windows; it is possible only to dump data and no store is executed. The key point

of the formalization is represented by the decision variables:

0ij i=1,...n, j=1,...m, 3)

each defined in the integer domdi ¢;]. These represent the amount of data to dump from the packet;sipre
within a windoww;. To formally represent the domain constraints, for each packet ptoré; = 1,...,n) and
for each time windoww; (j =1,...,m) some additional definitions are needed:

- d;;, amount of data memorized in the packet stpkgat ¢;. Where the variableg;, < ¢; represent the initial

data level in the packet stoye:;;

- 1;;, maximal level (amount of data stored) allowedtafor the packet storek;, i;; € [0, c;];

- b;, maximal dumping capacity available in;;
We introduce two classes of constraints on the set of decision varigbles first constraint captures the fact that
for each windoww; the difference between the amount of generated data and the amount of dumped data cannot
exceed the maximal imposed level in the windy (overwriting). Additionally, the dumped data cannot exceed

the generated dat@erdumpiny Thus, theconservative constrair(tl) is redefined into the following inequalities:

J J
D dik =Y 6 <1 4
k=0 k=1

j—1 J
Zdik _Z(Sik >0 %)
k=0 =1

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 7

fori=1,...,nandj =1,...,m. The need of these two inequalities is justified by the example in Fig. 2, where

we represent the changing over time of the stored data volume for a generic packetistanieh respect to a

window w;. In particular, thestore operations are “impulsive actions” performed at the extremgs; (andt;) of

wj, whereas the dumping operations are performétiin the windoww;. As a consequence, the amount of data

d;;, stored att;, cannot be dumped in the window;, because the data are not available during Hence, for

each windoww;, we have to check constraint (5) just befare(at ¢;), and constraint (4) just after; (at tj).

These constraints are necessary to avoid, respectively, to dump more data than available and to store more data

than allowed by the value df;. A second class of constraints takes into account the dumping capacity imposed by

pk;
.

H -

Fig. 2. The conservative constraints (4) and (5) have to be checked respectivr?l;aad t; -

the communication channel. L&} be the maximum amount of data that can be dumped dusingve have that:
ng@jgbj jzl,...,m (6)
i=1

thesedownlink constraintsstate that for each window;, is not possible to dump more data than the maximum

dumping capacity;.

B. Flow Networks and the Max-Flow Problem

Before the introduction of the flow network model fstex-MDP, in the following we briefly review the theory
behind the Max-Flow problem [6]. A flow networ&(V, E) is a direct graph wher& is a set of vertices an&
is a set of edgesu, v) with nonnegative capacity(u,v) > 0. The flow network has two special vertices: a source
s and sinkt. A flow in G is a integer-valued functioif : V x V' — Z (we consider only integer-valued flows) that

satisfies the following three properties:
- capacity constraint: for all,v € V,

f(u,0) < c(u,v)

- skew symmetry: for all,v € V,

f(uvv) = —f(’U, u)

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 8

by bo bm

l2('m,71)

bm

Fig. 3. A flow network forMEX-MDP.

- flow conservation: for alk. € V U {s, ¢},

Zf(u,v) =0

veV

The quantity f(u,v) can be positive or negative, and it representsrtbeflowfrom vertexu to vertexv. The
value of a flowf into the graphG, is defined as
F=> f(sv),
veV
that is the total flow out of the source. In the Max-Flow problem given a flow netwWyrthe goal is to find a flow

of maximum value from source to sink.

C. A Flow Network model foMEX-MDP

In this section we introduce a flow network to modeM&EX-MDP instance. Fig. 3 shows an example of flow
network in the case of two packets store, however this example can be easily generalized to the:gaaekefs
stores. There are four types of nodaesurce sink packet-store nodes;; (as explained below such nodes are

actually macro-nodesand channel nodes;.

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 9

The packet store nodg;; is composed of two nodes (see Fig. 4) to represent the two conservative constraints
(4) and (5). The first nod@g;) represents theverdumpingconstraint (5), such that, within the window; =
[tj—1,t;] it is not possible to dump more data than the amount availablg_at On the other hand, the node
pfj), represents theverwriting constraint (4), such that, the amount of residual data in the packet store after the
dumping operation over the window;, added to the amount of data stored atd;;), is less or equal to the allowed
capacity of the packet stofg;. In particular, on the nodgagjl.) there are the following three flowg:(p;(;—1), ps;),
f(pij,chj), and f(p” ,pEJ). The flow f(p;(;j—1),pi;) represents the residual amount of datapép at ¢;_;, that
is, Z{;é dip — k:l dik.f (pij, ch;) represents the amount of data dumped fr@m during the time windoww;,
that isd;; = f(pij, ch;). This edge is labeled with(p;;,ch;) = b; to hold the constraind;; < b;, that is,it is not
possible to dump more data than the channel capdgityFinally the f|OWf(pU ,pg) represents the amount of
residual data which remains in the packet store after the dumping over the wingdow

We remark that we split the nogs; for the same motivation for which the inequality (1) has been split into the

inequalities (4) and (5). In fact, if we consider the flow balance on the m@ﬂewe have that:

fi(j—1),piz) — f(pij, chj) = f(PEJ)7p£JZ))
that can be rewritten as:

Zdzk_z(szk)_ iy = p1])7p£]))_0

which coincides with the inequality (5). On the other hand, on the mﬁb there are the following flows:
f(pfjl)7p§]2)), f(s,pij), and f(pi;, pi(j+1)), Where the latter represents the residual amount of ¥afa, dix —
Zk:l ik and the flowf (s, p;;) concerns the amount of data stored at the windgwwhich can be at most equal

to d;;. Considering the flow balance (pﬁf) we have that:

f(pf}),pff)) + f(s,pi;) = f(Pig Pigi+1))

that can be rewritten as:

Jj—1 J
Zdik +dij — Z oik = f(Pij, Pig+1)) < lij
k=0

k=1
which coincides with the inequality (4).

To represent the initial value of each packet store the Qa;r,q#é)) are labeled with the valué;, whilst the arcs
(pfnz,t) are used to represent the overalsidualamount of data on the packets stoig att = H. To synthesize
solutions which dump all the data on the ground these arcs are labeled;with 0.

Finally the flow through each channel nodk; represents theownlink constraint over the time window;,

i f(pij,chj) 25”: f(chj,t) < b;
i=1

that is,the sum of data dumped from each packet store over the windois less or equal the channel capacity
b;.

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 10

Fig. 4. The internal structure of a macro-ngelg.

To conclude, a flow assignment to any edges is computed by applying a Max-Flow algorithm to the flow network
in Fig. 3. The result represents the maximum value of data which can be conveyed through the communication

channel. Thus MEex-MDP will admit a solutionif and only if:
f(s,pi5) = c(s,pij) = dij
foreachi =1,...,n andj = 1,...,m. In other words, the formula above states that the maximum flow through
the network equates the whole data set stored in the different packets store.
Based on the model described above, in the next section two methods for approadig-BlDP instance

are introduced: the first computes a solution, while the second aims at refining an initial solution for the sake of

robustness.

V. SOLVING METHODS

As mentioned above, to find a solution taveEX-MDP problem is sufficient to apply a Max-Flow algorithm to
the associated flow network (see Fig. 3), next the set of dump commands can be obtained with a simple algorithm.
A solution of aMEX-MDP instancejndp, exists if and only if the flow through each &g p;;) equates its capacity
value, that is,f(s, pi;;) = c(s,pi;). In such a case we have that the set of valties= f(p;;, ch;) is a solution
of mdp. There are different polynomial algorithms to solve the Max-Flow problem. Our current implementation is
based on the Edmond-Karp version of the Ford-Fulkerson method. The Edmond-Karp algorithm®yfig|i|?)
time, where|V| and|E| are respectively the number of nodes and the number of arcs in the flow network. Being
in our casglV| = O(mn) and |E| = O(mmn), our current implementation runs @(m?3n?3). An improvement in
the sense of CPU time can be achieved using more sophisticated max flow methods like the preflow-flush one [7].

The reader can find an essential survey on this issue in [6, chapter 26].

A. Finding a downlink schedule

We now describe how to build a downlink schedule. As mentioned above, a downlink schg&duie

{mdy,mds, ..., md,q} can be directly deducted on the basis of the valjes

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 11

Algorithm 1: Make a downlink schedule
input : a solutiond;;, i =1,...,n,5=1,...,m

output: a scheduleS = {md;, mda, ..., mdpq}

1 begin

2 | S0

3 c—1

4 t<«—to

5 foreach (windoww;, j =1,...,m) do
6 while 3 a packet storepk;: ¢;; > 0 do
7 Select a packet storgk.: 6.; > 0
8 Se — t

9 €c < Sc+ 0c; /T

10 mde = (pke, Sc, €c, 0cj)

11 S =SuU{md.}

12 t«— e

13 c—c+1

14 t—t,;

15 return S

16 end

Algorithm 1 takes as an input a solutidf; (¢ =1,...,n, j =1,...,m) and finds a downlink schedulin§ by
iterating on the set of downlink windows; = [t;_1,t;] (j = 1...m) . For each windowwv;, the algorithm selects
a packet storgk, until all the packet stores with variablés; > 0 are all selected. Within the/hileloop the packet
store selection (Step 7) is performed on the basis of an heuristic criterion. Many criteria are possible, for example
the shortest dump firsheuristic, which selects first the packet store with the smallest vale A memory dump
operationmd. = (pke, s¢, ec, ;) from a packet storgk. is obtained by adding its start timg, end timee.. The
start time is calculated by means of a variablgurrent time) which is incremented by the duration of the current
added memory dump (within the while loop) or set to the start of the next dump windowhen all the packet
store withinw; are considered.

Example 1:To better explain our flow model and algorithm to convert a max-flow solution into a downlink
schedule, let us introduce the following example. Two payloads are part of the satellite, with ids AC and DM, such
that, each one stores its own data in an exclusive packet store which has the same id of the related payload. We

have three store operations on the packet stores AC and DM:

- pory on AC which produces 50 Mb at t= 11:55:11;

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 12

)0 “"/@\w\} y

window 1 K}— window 2

(a) Flow-Network model (b) Max-Flow solution

Fig. 5. Flow network for Example 1

- pore on DM which produces 100 Mb at t= 12:13:37;
- pors on AC which produces 60 Mb at t= 15:33:12.

In the period taken into account we have two transmission windows:

- window,, from 12:20:12 to 12:43:32, rate= 50 Kbps;
- windows, from 17:25:50 to 18:59:10, rate= 25 Kbps.

Considering the duration (respectively 00:23:20 and 01:33:20) and the transmission rate of each window we
have a dump capacity of 70Mb and 140Mb respectively. Furthermore, the two packets store, AC and DM, have a
maximum capacity equal to 120Mb and 150Mb respectively.

Figure 5(a) shows a flow-network representation for the problem introduced so far. We emphasize with labeled
dashed rectangles the nodes of the network which belong to each packet store, to the transmission channel and to

each time window. As described above there are five types of edges:

- from thesourceto a “packet store” node (we omit the edge if the capacity/the dump value is zero) to represent
the amount of data to download;

- between nodes of the same packet store to represent the packet store availability;

- from a “channel” node and thgeink to represent the channel capacity for each time window (in this case we
have 70Mb and 140Mb);

- from a “packet store” to a “channel” node to represent the data dumped from each packet store within each
time window.

- from a “packet store” node to the sink (of course these are labeled with the packet store capacity value) to

represent the amount of residual data for each packet store at the end of the planning horizon.

Figure 5(b) presents a max-flow solution to the network Fig. 5(a). The label of each edge denotes respectively

the flow through the edge and its capacity. We can observe on this solution the following points: — all the dump

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 13

data are downloaded, in fact there is no flow through the edges between the “packet store” nodes and the sink and
there is no possibility to increase the flow through the edges between the source and a “packet store” node; — there
are three dump operations from both the packets stores at each time window (see edges between “packet store”

and “channel” nodes).

It is worth noting that the Max-Flow approach allows to denote the number and the size of dump operation for
each time window. Given this solution it is straightforward to compute the exact dump commands by Algorithm 1.
For instance in this case we have the following list:

start stop PkS Dumped[Mb]
12:20:12 12:43:32 DM 70
17:25:50 17:45:.50 DM 30
17:45:50 18:59:10 AC 110

Each item represents a different dump command and specifies the start and end-time of the dump, the packet store
involved and the amount of dumped data.

We conclude by remarking that given the results of the Max-Flow algorithm the list above is not unique. In this
example, we use thehortest dump firdbeuristic, that is given a set of planned dumps within a specific transmission
window, we schedule them in increasing order w.r.t. the amount of dumped data. For this reason during the second

transmission window we first schedule the dump from the packet store DM (30 Mb instead of 110 Mb).

B. Iterative Leveling: Improving Robustness

In this section we present the iterative algorithm used to improve the robustness of an input solution. We recall
that in this domain we consider a solution as robust if the level of data over time of each packet storgpéaksno
close to its maximal capacity, so that there is always available memory for unexpectedly large amounts of data.
Hence, roughly speaking, we can remalangerouspeaks of data with #&eveling procedure which distributes the
“exceeding” data over the problem horizon. In particular, we propose an heuristic algorithm for improving robustness
which iteratively applies the three-steps cystdution analysis/problem-update/constructi@ur approach somehow
resembles the concept of “feedback” widely used in Control Theory. Furthermore, a similar idea has been proposed
in the work [8] for the optimization of the makespan of scheduling problems.

The iterative method is presented with Algorithmi2fative-Leveling. This takes in input MEX-MDP instance
mdp, and a parametere (0, 1). The algorithm starts by finding an initial solution, represented in compact way by
d={d;;:i=1,...,n,5=1,...,m} (Step 2). If a solution is foundj # (), the algorithm proceeds by initializing
all the elements of the vectgfilatten|] to TRUE, where flatten[i] = TRUE means that the maximum usage of the
packet storepk; can be potentially lowered again.

The while loop (Steps 6-16) represents the core of the algorithm. In this loop the following three steps are

repeated:

1) analyze the current solution and seleatrdical packet storepk;, such that the percentage usage vaiye

is maximum (Step 7);

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 14

Algorithm 2: Iterative-Leveling

10

11

12

13

14

15

16

17

18

input : a MEX-MDP instance,mdp, and a parametere (0, 1)
output: a MEX-MDP solution

begin

0 «— SolveByMaxFlowmdp)

if 0 # 0 then

for j=1tom do

flatten[j] < TRUE

while 3i| flatten[i] =TRUE do
pky, — SelectPacketStore()
for j =1tom do

L lej o (1 =€)l
0" — SolveByMaxFlowmdp)
if &' =0 then
flatten[k] — FALSE
for j =1tom do

|t aita
else

0« ¢

return §

end

2) for any time windoww;, the maximum level constrairt}; of the selected packet stopé;, is reduced to the
value o (1 — €)lx; (Steps 8-9). In this way the maximum percentage usage is forced to be less;than

3) solve the modified problem (Step 10). If this does not admit a solution then the “modified” packetistase
labeled as not improvablglatten]i] = FALSE and the previous consistent situation is reloaded (Steps 13-14).

Otherwise the current best solution is updated (Step 16).

The aim of the three steps is to iteratively flatten the current critical packet store. These steps will be repeated until

there is at least one packet store which admit an improvement.

Example 2:To better explain the robustness concept as well as the iterative leveling algorithm, we consider again

the problem introduced in Example 1.

Figure 6 shows the profiles usage of both the packets store with respect the computed solution (see Fig. 5(b)).

Even though the two profiles are consistent with respect to the packet store capacity, we notice that for the AC

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 15

AC 120Mb

[

11:55:11 15:33:12 18:59:10

150Mb

i l

12:13:37 17:45:50
12:43:32

DM

Fig. 6. Packet Store Profiles usage w.r.t. the solution in Fig. 5(b)

packet store we have a critical situation. At time t= 15:33:12 we have a peak of memory usage equal to more than
91% (we have an amount of stored data equal to 110Mb against a capacity of 120Mb). Regarding DM we instead
have a maximum use equal 66, 7%.

The criticality of this situation stems from the unpredictability of the operation outcome. In fact if the second
operation (at time t=15:33:12) produced more data, for instance 75Mb, we would encounter a data loss. For this
reason we have shown above that a possible approach may consist in reducing the capacity considered during the
Max-Flow algorithm, in order to anticipate some dumps from critical packets store.

In this case we can “robustify” the solution by reducing the resource capacity considered for the packet store AC.
For instance, Fig. 7 shows the result of our algorithm considering for AC a capacity of 100Mb instead of 120Mb
by means of an input parameter= 1/6 (Note that the edge between the two “packet store” nodes associated with
AC is now labeled with the value 100). To avoid an inconsistent situation (w.r.t. the new constraints), a first dump
(50Mb) from AC is scheduled during the first transmission window. This allows to eliminate the previous peak. Of
course the amount of data dumped from DM during the same interval is reduced (in Fig. 7 the new flows value

are underlined). Given this solution a possible sequence of dump commands is the following:

start stop PkS Dumped[Mb]
12:20:12 12:26:52 DM 20
12:26:52 12:43:32 AC 50
17:25:50 18:05:50 AC 60
18:05:50 18:59:10 DM 80

Figure 8 presents the new profiles for the new solution. We have now that the maximum usage fos0%€ is
while for DM is still 66, 7%. Therefore the new solution presents more robust characteristics than the one introduced

in the Example 1.

VI. EXPERIMENTAL EVALUATION

This section is dedicated to discuss the results of an empirical evaluation of the methods described above. These

have been evaluated using the benchmark sets defined during the study conducted for the European Space Agency

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 16

50/50
_ .L\ 0/60
OO0

100/100

Fig. 7. Alternative, more robust, solution.

AC 120Mb
11:55:11 15:33:12 18:05:50
12:43:32
DM 150Mb
12:13:37 18:59:10

12:26:52

Fig. 8. Packet Store Profiles usage w.r.t. the solution in Fig. 7

[3]. In particular, in this section we present the results for one of these benchmatkB®t his benchmark is
composed of 9 problems and has been generated on purpose in order to be critical with respect to, on one hand,
the competition among the packet stores for the same channel bandwidth, and, on the other hand with respect to
the limited capacity of the packet stores relatively to the amount of generated data. In particular, these problems
are generated with regard to the following setting for the domain parameters: 1 science housekeeping packet store,
11 science packet stores, 8 payloads and a channel data rate of 228 Kbps.

Figure 9 shows the results with respect to the solution’s robustness (see Section llI-B): the application of the
Iterative-Levelingalgorithm increases the quality of the final solution. In particular, the graph labeled/ will”
represents the robustness of a solution generated with one run of the solving algorithm based on the Max-Flow
reduction, while the curve labeled wittEV represents the robustness values after the application dfettative-
Levelingalgorithm described in Section V with= 0.02. Figure 9 shows how for some problems the robustness
is improved of25%, that is, the maximum utilization of a packet store (2) is lowered fi@®% to 75%.

In addition, a further analysis can be done considering the average maximum utilization of the packet stores, that

2The benchmark sets are available at the addiegs://mexar.istc.cnr.it

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 17

120

INIT-AVG ---%---
LEV-AVG 8

robustness (%)

40 |- 1

0 L L L L L L L
1 2 3 4 5 6 7 8 9

problem instance

Fig. 9. Performance on benchmark B5.

is, the average of the valueSef.m“””) /c; over the set of the actually used packet stores. The two CUNEBAVG

and LEV-AVGin Fig. 9 represent this value respectively before and after the application difetagive-Leveling
algorithm. Clearly, the main effect of the leveling algorithm is to create a different distribution of the dumping
operations over the horizon in order to remalangerousdata peaks. Regarding the CPU-time, all the algorithms
presented in this paper are implemented in Java on an Athlon 1800 Mhz machine, and the average CPU-times are

respectively0.8 seconds to generate an initial solution &1d8 seconds to improve its robustness.

VII. MISSION OPERATIVE ENVIRONMENT AND ROBUSTNESS

The algorithms described in this paper are part of the software syStemnRr2, a Decision Support System
(DSS) developed within a project work supported by ESA and targeted for solving etxeM Dp. In the MEXAR2
project the main idea is to integrate human strategic capabilities and automatic problem solving algorithms to find
solutions with theright compromiseamong different and contrasting goals, under the full control of the mission
planners. As introduced above, in this work we refer to an abstaet model of MEX-MDP, which allows us
to introduce the Max-Flow model of the problem and to recognize one of the main source of brittleness for a
downlink schedule, i.e. peaks of data volumes stored in the on-board memory. However, in the realm of the mission
operative environment, a mission planner have to take into account a set of additional constrdihexfDp
with respect to those modeled in Section 1lI-B. Under this additional set of constraintd)eieMDP problem
could be formulated as a monolithic multi-criteria mixed integer programming (MIP) problem, but we prefered a
heuristic approach for its solution, like the Max-Flow based one. In fact, this approach allows a finer control of the
search for dump plans by adopting different heuristics for the selection of augmenting paths within the Max-Flow
algorithm, such that this flexibility can be exploited for a smoother integration of the mission planner choices in

the search process and to cope with the following further additional constrainkéerrM DP:

- in general, aMEX-MDP admits many solutions, however from a practical point of view, the only useful ones

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 18

are the solutions where each dump operation starts as soon as possible. In other words, useful solutions are
the ones where the variablés greater than zero aghiftedtoward time origin. These kind of solutions can

be easily obtained with a max-flow algorithm by generating the augmenting path through the channel nodes
in increasing order of indexes.

- When the problem isver-constrainedthat is, no solution exists and part of the data is lost (this is an extreme
situation in theMARS-EXPRESSdomain, but possible). The solving procedure must return in every case a
solution, whichsacrificessome data. In this case the solution provided by the max-flow is still useful, even
if, some data is lost. Also, in this case it is possible for a user to select which data to sacrifice by driving the
search of augmenting paths within the max-flow algorithm.

- Dump commands have a minimal durations (e.g., 30 seconds) and it does not make sense to have commands
with durations of few seconds. In general, pfssgmentationmust be avoided, that is plans containing many
commands with small durations interleaving dump commands from several packet stores.

- Packet stores have priorities. These priority values are considered also when some data must be renounced.

- For some packet stor@seemptioris not allowed, hence it is not possible to dump their content over a sequence
of dump commands and the operation must be accomplished in one step.

Furthermore, we would like to remind as the solutionMEX-MDP is part of a larger decision process involving
several stages of planning (long, medium and short-term planning) the interaction of many working teams. Then,
at this level of the decision chain, the role of a DSS is to complete and make executable a set of decisions already
taken in an abstract way. For instance, at the end of each mission day, the real volumes of data in the set of
packet stores are reported to the mission planner, such that a new downlink schedule can be possibly re-synthesized
accordingly. This daily procedure can be seen afaed-loopplanning, which reacts to unexpected peaks of data

by anticipating the dump operations (this is the main effect of reducing the capacity of a packet stores) in the
packet stores which exhibit this kind of criticality. In this situation a robust solution may play a fundamental role

in order to avoid plan regeneration and/or data losses.

VIII. CONCLUSIONS

During a project work for the European Space Agency a specific scheduling problem arose: the sl aalted
ExPRESSMemory Dumping Problem oMEex-Mbp [3], [4], [5].

In this paper we face this problem in a novel way by a reduction oMlzex-MDP to a Max Flow problem [6].
The algorithm described in this work is currently integrated in a larger algorithmic framework within a Decision
Support System (DSS) targeted to deliver high quality solutions tdvth&-MDpP where the main goal is to avoid
data overwriting, while taking into account other quality measures, like data priorities-based objective functions or
the length (number of commands) of a dump plan. Max-Flow reduction can be intuitive considering that a solution
to the dumping problem can be seen as a flow from the satellite to the ground, such that the problem has a solution
when the maximum flow equates the total amount of data to dump. Given this reduction, a definition of solution’s

robustness is proposed together with an iterative procedure to improve the robustness of a solution, the underlying

September 2005 DRAFT

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART C, MANUSCRIPT ID SMCC-05-04-0097 19

idea being that the lower the memory utilization the higher the ability to face unexpectedly larger amount of data.
Experimental data confirm our thesis: we can effectively rentaregerougpeaks of data and distribute them over

the problem horizon by using theerative-Levelingorocedure. We remark that even though hex-MDP problem

comes from a specific study, its features are quite general and many of the conclusions reported in this paper can

be extended to other spacecraft domains which adopt the same model of on-board memory.

ACKNOWLEDGMENTS

The MEX-MDP has been studied in a study conducted for ESA from November 2000 to July 2002 (contract No.
14709/00/D/IM). The Max-Flow approach is currently used in the framework of the prbjectaAR2 supported
by ESA (contract No. 18893/05/D/HK(SC)).

The authors would like to thank their colleagues Amedeo Cesta and Riccardo Rasconi for their precious advices

and suggestions.

REFERENCES

[1] G. Verfaillie and M. Lemaitre, “Selecting and Scheduling Observations for Agile Satellites: Some Lessons from the Constraint Reasoning
Community Point of View,” inPrinciples and Practice of Constraint Programmingf” International Conference, CP 200%er. Lecture
Notes in Computer Science, T. Walsh, Ed., no. 2239. Springer, 2001, pp. 670-684.

[2] E. Bensana, M. Lemaitre, and G. Verfaillie, “Earth Observation Satellite Managen@amtstraints: An International Journalol. 4, no. 3,
pp. 293-299, 1999.

[3] A. Cesta, A. Oddi, G. Cortellessa, and N. Policella, “Automating the Generation of Spacecraft Downlink OperatbaRSIEEXPRESS
Analysis, Algorithms and an Interactive Solution Aid,” ISTC-CNR [PST], Italian National Research Council, Tech. Rep. MEXAR-TR-02-10
(Project Final Report), July 2002.

[4] A. Oddi, N. Policella, A. Cesta, and G. Cortellessa, “Generating High Quality Schedules for a Spacecraft Memory Downlink Problem,”
in Principles and Practice of Constraint Programmir@f,” International Conference, CP 20p3er. Lecture Notes in Computer Science,

F. Rossi, Ed., no. 2833. Kinsale, Ireland: Springer, 29 September - 3 October 2003, pp. 570-584.

[5] G. Cortellessa, A. Cesta, A. Oddi, and N. Policella, “User Interaction with an Automated Solver. The Case of a Mission PisycteXtlogy
Journal vol. 2, no. 1, pp. 140-162, 2004.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéitroduction to AlgorithmsSecond Edition. MIT Press, 2001.

[7] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow probldoyinal of ACM vol. 35, no. 4, pp. 921-940, October
1988.

[8] D. Joslin and D. Clements, ““Squeaky Wheel” Optimizatiodgurnal of Artificial Intelligence Researckol. 10, pp. 353-373, 1999.

September 2005 DRAFT

