
Designing a Testset Generator for Reactive Scheduling

Nicola Policella and Riccardo Rasconi
ISTC-CNR

Institute for Cognitive Science and Technology
National Research Council of Italy
{name.surname}@istc.cnr.it

Abstract. In this work we design a benchmark generator
for the reactive scheduling problem. This problem consists
in monitoring the execution of a schedule and repairing it
every time it is deemed necessary. The main motivations
behind this work grow out either from the recognized lack
(hence the necessity) of benchmark sets for this specific
problem as well as from the fact that the resolution of a
scheduling problem consists both in the synthesis of an ini-
tial solution (“static” or “predictive” scheduling) and in the
utilization of a number of methodologies dedicated to the
continuous preservation of solution consistency (and qual-
ity). In fact, the occurrence of exogenous events during the
execution phase in real working environments, often com-
promises the schedule’s original characteristics.

Keywords: Scheduling, Benchmark Generation.

1 Introduction

The validity of a schedule is often very short. Scheduling
is defined in theory as the problem of assigning a set of
activities (or tasks) subject to a number of constraints, but
the synthesis of initially feasible schedules is hardly ever
sufficient; in real-world working environments, unforeseen
events tend to quickly invalidate the schedule predictive
assumptions and bring into question the continuing consis-
tency of the schedule’s prescribed actions. Therefore, the
definition of scheduling problem has to be broadened so as
to take into account both a “predictive” scheduling phase,
whose aim is to propose a possible solution, and a “reac-
tive” scheduling phase, whose objective is to maintain the
quality of the current solution at execution time.

While the predictive scheduling aspects have been thor-
oughly evaluated through the production of several bench-
marks and metrics, the aspect related to reactive schedul-
ing has not yet received the same level of attention. As a
matter of fact, the predictive and the reactive aspects of the
scheduling problem are inherently correlated and cannot be
separated; in other words, it is not possible to measure the
quality of a rescheduling action if no information is given
about which characteristics of the initial solution should be
maintained, as well as it is not possible to assess the valid-
ity of an initial solution unless it has undergone a number
of proper execution-time tests.

According to this point of view, our research work aims
at producing a general framework for scheduling problems.
In the course of our work we focus on the production of
a Reactive Scheduling Testset Generator, as we recognize
this as being a necessary instrument to assess the validity of
the various rescheduling methodologies. The presence of
this benchmark should reveal crucial to boost research on
reactive scheduling and therefore, on general scheduling.

2 Project Scheduling Problems

The scheduling problem is primarily concerned with fig-
uring outwhentasks should be executed so that the final
solution guarantees “good” performance relatively to the
optimization of given objective functions. In this paper,
we focus on a particular family of scheduling problems,
known asProject Schedulingproblems, whose main ele-
ments can be recognized as the following:

– Activities. A = {a1, . . . , an} is the set of activities or
tasks. Every activity is characterized by a processing
timepi.

– Resources. R = {r1, . . . , rm} is the set containing
the resources required to execute the activities. Exe-
cution of each activityai can require an amountreqik

of resourcerk during its processing. There are dif-
ferent kinds of resources: disjunctive or cumulative,
renewable or consumable, among others.

– Constraints. The constraints are rules that limit the
possible allocations of the activities. They can be di-
vided in two types: (1) theresource constraintslimit
the maximum capacity of each resource. For exam-
ple, there may only be a certain number of machines
or people available to work on some activities at any
given time. (2) thetemporal constraintsimpose limi-
tations on the times in which activities can be sched-
uled. A binary constraint is imposed between to activ-
ities, for instance in order to mutually bind the instant
of occurrence of their start times.

Because it has so many real-world applications, the
scheduling problem has been widely studied by many
scientific communities, such as the Artificial Intelligence

1

2 Policella, Rasconi

(AI), Management Science (MS), and Operations Research
(OR). Yet, these different approaches share a common
drawback: they tend to neglect the fundamental aspect rep-
resented by the need to execute the found solutions in real
working environments, where a variety of possible events
may invalidate the current schedules making some proper
and quick adjustments necessary [1]. All this considered, it
is fundamental to introduce a broader definition of schedul-
ing problem, consisting in the following two components:

– thestatic sub-problem: given a set ofactivitiesand
a set ofconstraints, it consists in computing a consis-
tent assignment of start and end times for each activ-
ity. Obviously, this sub-problem represents the com-
monly known scheduling problem;

– thedynamic sub-problem: it consists in monitoring
the actual execution of the schedule and repairing the
current solution, every time it is necessary. The need
to revise the schedule arises as a consequence ofex-
ogenous eventoccurrences.

In this paper we provide an analysis of the dynamic sub-
problem, we identify a number of particularly meaningful
events which are likely to occur during schedule execution,
and, finally, we show how these events may represent the
building blocks for reactive scheduling benchmarks.

3 Schedule execution and exogenous events

The synthesis of a benchmark requires the identification of
the most significant characteristics of the problem. In the
case of the reactive scheduling problem, the uncertainty as-
pects which normally permeate the physical environments
will have to be properly modeled through the characteriza-
tion of a set of particularly significant exogenous events;
the benchmarks we are pursuing to develop will be based
on the production of sequences of elements taken from
this set. Real world uncertainty can be singled out in the
following bullets: activity delay, e.g., a surgery operation
must be delayed until the doctors arrive;growth of activity
processing time, e.g., getting a flat tyre inevitably extends
the duration of a journey;lowering of resource availability,
e.g., unexpected loss of a piece of machinery in an assem-
bly line; variations in the number of activities, e.g., adding
an unscheduled visit to the mother in law in the daily plan;
change in the mutual ordering of the activities, e.g., an ac-
tivity in a production chain may suddenly become more
urgent than another.

Therefore, the elements of uncertainty which may nor-
mally affect the consistency of a schedule basically belong
to one of the following types: (1) temporal changes, which
involve the various temporal aspects of the problem; (2) re-
source variations, which modify the resource availability
during the execution of a schedule; (3) causal changes,
which involve the introduction of new constraints among
the activities. Moreover, during the execution of the sched-
ule, the number of activities to be served may dynamically

vary. Figure 1 shows how the events described above can
affect the schedule during its execution.

3.1 The ingredients of the benchmark sets

In the production of a benchmark set for our problem fun-
damental characteristics are represented by the type of un-
expected events which can spoil the execution of the so-
lution, their quality (or magnitude), and the way they are
spaced in time. While the importance of the first two as-
pects is evident, the last point requires a further remark:
to “simulate” a real executional behavior we need to know
also when given events will happen: for instance let us sup-
pose to have an activity scheduled att = 21 and, suddenly,
we know att = 13 that this activity has to be delayed of
3 time-units. In this case we will have21 − 13 = 8 time
units to compute a new solution for our current problem.

In this section we discuss how these aspects have been
faced during the production of our testset generator.

The need of spacing the events.We have highlighted
above the need of spacing the different exogenous events
of the benchmark. This will be done introducing in the
definition of the single type of the parametertaware. This
element specifies the “absolute” instant where the specific
event is supposed to happen. By using thetaware parame-
ter it is possible to temporally sort all the generated events
and to “fire” them in order of occurrence. For instance,
let’s suppose that the two following events are generated:
a 5 time units delay on the start time of activitya1 to occur
at tE = 13 and a 6 time units increase on the duration of
activity a2 to occur attE = 7. Clearly, as the simulated
execution starts, the two events will be ordered according
to their occurrence time. In this example, attE = 7 the du-
ration of activitya2 will be increased, and, after counter-
acting the possible inconsistencies introduced by the event,
the schedule will undergo the second event occurrence at
tE = 13.

Why choosing absolute values fortaware? An alterna-
tive could be to define it as a variable whose values are
event-bound, for instance related to the start times of the
activities. However, in this way the single instance will
yield different executional behaviors w.r.t. the considered
schedule (a problem can admit several solutions). A further
reason is due to feasibility issues. In fact bindingtaware

values to the start time of one activity could in fact pro-
duce a situation where an event, supposed to be fired on
one activity attaware, may not be introduced because its
value falls into the past w.r.t. the current execution time
(see section 4.4 for an example). As will be considered
in the next section, the fact that thetaware parameter takes
temporally “absolute” values, poses the problem of synthe-
sizingtaware values that are guaranteed to be valid for any
possible schedule execution. In other words, it is necessary
to make sure that all the events produced by the benchmark
generator will be applicable to the schedule representation

To appear inIntelligenza Artificiale, Italian Journal of Artificial Intelligence, Year II, number 3, 2005 3

(a) Temporal changes: activities can last more than ex-
pected or they can be postponed until necessary conditions
are satisfied.

Resource availability

(b) Resource changes: the two red curves represent the
nominal (left) and the actual (right) resource availability.
The reduction of resource availability blocks the execution
of the last two activities, which are delayed.

(c) Activity changes: the need of serving a new activity
requires a reallocation of the current scheduled activities.

(d) Causal changes: a new precedence relation between a
pair of activities requires a revision of previous choices.

Figure 1: On the same initial solution, different events may require interventions to re-establish the validity of the schedule

at all times.

Definition of the different exogenous events. In order
to define a benchmark set for the dynamic sub-problem, we
refine here the event concept introduced above. For each
exogenous events we provide in the following a detailed
definition.

– delay of an activity, edelay:

edelay = 〈ai,∆st, taware〉

besides the activity to be delayedai and the width of the
shift, ∆st, it is necessary to specify the instant where the
specific event is supposed to be detected,taware (this is a
common element of all the defined events);

– change of an activity processing time, ep;

ep = 〈ai,∆p, taware〉

like the previous case it is necessary to specify three differ-
ent parameters: the activityai, the change in duration∆p,
andtaware;

– change of a resource availability, eres;

eres = 〈rj , ∆cap, stev, etev, taware〉

in this case, there are more parameters to specify: the re-
source involvedrj , the variation in resource availability
∆cap, the time interval in which the change takes place
[stev, etev], andtaware. We note that the time interval can
be infinite, i.e.etev →∞;

– change of the set of activities to be served, eact

eact = 〈fa, ak, reqk, durk, estk, letk, taware〉

where the parameterfa ∈ {add, remove} is a flag that de-
scribes whether the activityak has to be added or removed;

reqk = {reqk1, . . . reqkm} is a vector that define the re-
source requirement for each resource. Then the activity
durationdurk, the time interval in which this activity has
to be served[estak

, letak
] andtaware. Of course we have

thatletk − estk ≥ durk.
– insertion or removal of a causal constraint between two

activities, econstr

econstr = 〈fc, aprec, asucc, dmin, dmax, taware〉
where the flagfc ∈ {add, remove} describes if the con-
straint betweenaprec and asucc has to be posted or re-
moved. We need also to specify the minimum and maxi-
mum distancedmin, dmax imposed by the constraint and
taware. In case the∆st parameter of theedelay event
should be negative, this is reflected in starting the activ-
ity earlier than expected. Similarly, a negative value for
∆p in theep event determines an early stop of the activity,
while a negative value of∆cap determines an increase of
the resource availability during the interval[stev, etev].

Regarding the last two events, we have to say that in case
of activity and/or constraint removal (eact andeconstr) it
is necessary only to specify the parameters related to the
involved activities, that isak and the pair(aprec, asucc),
respectively.

4 The Testset Generator

In this section we describe a framework to generate bench-
mark data sets. As described above, we want to take
into account the scheduling problem considering both the
production of an initial solution (the static sub-problem)
and the management of the actual execution of the so-
lution (the dynamic sub-problem). Although, the gen-
eral scheduling problem requires to create benchmarks for
both sub-problems, at this first stage we focus our atten-
tion exclusively on the production of benchmarks for the

4 Policella, Rasconi

Testsets
Generator

Testsets
Generator

Project
Scheduling

Problem

Predictive
Scheduler

Predictive
Scheduler

Reactive
Scheduler

Reactive
SchedulerInitial

Schedule

Exogenous
Events

Final
Solution

Figure 2: Reactive Scheduling Framework

dynamic scheduling sub-problem. In fact, as mentioned
above, different benchmark generators for the commonly
known scheduling problem have been deeply studied in lit-
erature [6, 7, 9]; therefore the benchmark generator will
be based on scheduling problem instances already defined
with these approaches. Figure 2 depicts the elements of
an empirical framework for schedule execution, showing
how the benchmark generator for the reactive scheduling
problem is strictly decoupled from the scheduling problem
solutions.

In the remainder of this section we first describe the
scheduling problem we refer to,RCPSP/max, then we in-
troduce the related benchmark generator.

4.1 The reference problem:RCPSP/max

The Resource-Constrained Project Scheduling Problem
with minimum and maximum time lags,RCPSP/max [2],
is here adopted as a reference problem. The basic ele-
ments of this problem are a set ofactivities denoted by
A = {a1, a2, . . . an}. Each activity has a fixedprocess-
ing time, or duration, pi and must be scheduled without
interruption.

A scheduleis an assignment of start times to activi-
ties a1, a2, . . . an, i.e. a vectorS = (st1, st2, . . . , stn)
wheresti denotes the start time of activityai. The time at
which activityai has been completely processed is called
completion timeand is denoted byeti. Since we assume
that processing times are deterministic completion times
are determined byeti = sti + pi. Schedules are subject
to both temporaland resource constraints. In their most
general form temporal constraints designate arbitrary min-
imum and maximum time lags between the start times of
any two activities,lmin

ij ≤ stj − sti ≤ lmax
ij wherelmin

ij

andlmax
ij are the minimum and maximum time lag of activ-

ity aj relative toai. A scheduleS = (st1, st2, . . . , stn) is
time feasible, if all inequalities given by the activity prece-
dences/time lags and durations hold for each start timesi.
During their processing, activities require specific resource
units from a setR = {r1 . . . rm} of resources. Resources
are reusable, i.e. when they are released if no longer re-
quired by an activity, they are immediately available for
use by another activity. Each activityai requires the pres-
ence ofreqik units of the resourcerk during its process-
ing timepi. Each resourcerk has a limited capacity ofck

units. A schedule isresource feasibleif for each instantt

the demand for each resourcerk ∈ R does not exceed its
capacityck, i.e. (

∑
sti≤t<ei

reqik) ≤ ck. A scheduleS is
calledfeasibleif it is both time and resource feasible.

4.2 Modeling exogenous events forRCPSP/max

Section 3.1 has introduced different types of events which
represent the ingredients of a benchmark data set. In this
section we describe the input data that have to be provided
to the benchmark generator. To this aim, it is possible to
single out the following items: (a) the scheduling problem
P, (b) the number of events to generate, (c) the probability
of occurrence for each single type of event, and (d) the
minimum and maximum magnitude of each type of event.

As mentioned above, a key point in a benchmark in-
stance for the dynamic sub-problem is the fact that the dif-
ferent events have to be properly spaced in time. This as-
pect has been taken into consideration with the definition
of the parametertaware, whose different values determine
the instants where each specific event is supposed to be de-
tected. Finding a value for thetaware parameter which is
consistent for all possible executions is trivial only in the
case of the eventeres: in fact, in this case, the condition
taware ≤ stev can always be verified. In the other cases,
as more activities are involved, it is in general not possi-
ble to define a consistent value oftaware unless a proper
analysis of the scheduling problem is done. This is due to
mainly two reasons: (1) the solution of a scheduling prob-
lem is in general not unique, and (2) the start times of the
schedule activities may decrease during execution because
of task anticipations. For instance, if we need to delay an
activity, obviously the value oftaware should not be greater
than the start time of the activity; but since the start time
of each activity is in general different according to differ-
ent schedules there is no way to compute a set oftaware

values which are guaranteed to be valid for every possible
execution unless some new hypothesis are introduced.

To compute consistenttaware values we used a relaxed
version of the scheduling problem in which resource con-
straints are not taken into account. This relaxed problem
consists in a Simple Temporal Problem, or STP. An STP
can be represented by CSP in which every constraint is bi-
nary (involves at most two variables) and a consistent so-
lution is obtained, after a complete propagation, picking
the lower admissible value for each activity – earliest start
time solution (for a thorough discussion of STP the reader
can refer to [5]).

Therefore, using the relaxed version of the scheduling
problem it is possible to compute the lower and the upper
bound for the start and the end time of each activity, val-
ues that can be used to define the parametertaware for the
events, at least for the initial solution. In fact, the occur-
rence of the produced events can make these bounds no
longer valid (for instance if an activity duration is reduced
and/or an activity is anticipated). For this reason we need
to add a set of simplifying assumptions on the events that

To appear inIntelligenza Artificiale, Italian Journal of Artificial Intelligence, Year II, number 3, 2005 5

have to be generated:

- activities cannot be anticipated, that is, for eachedelay

is ∆act > 0;

- activity durations can only increase, that is, for each
ep is ∆p > 0;

- only resource availability reductions are allowed, that
is, for eacheres is ∆cap > 0.

- no causal constraint removals are allowed.

The previous assumptions guarantee that each event, re-
gardless of its type and time of occurrence, will constrain
the problem in amonotonicmanner. In other words, given
an initial problemP characterized by a constrainednessC,
and an eventek, the problemP ′ obtained by addingek

to P, will be characterized by a constrainednessC′ ≥ C.
This property of monotonicity, ruling out any chance of
possible constraint relaxations, ensures that all the lower
and upper bounds for the start and end times of each ac-
tivity computed on the relaxed version of the scheduling
problem, remain valid at all times. This allows to de-
fine “safe” values for thetaware parameter related to the
different events: (1) in the case of a delay of activityai

(edelay), we assume thattaware ≤ lb(sti), (2) in the case
of change of duration of the activityai (ep), we assume
thattaware ≤ lb(eti), (3) in the case of adding/removing a
new activityak (eact), we assume thattaware ≤ lb(stk) if
the activityak is removed, andtaware ≤ estk otherwise;
(4) in the case of adding/removing a new constraint be-
tween the two activitiesaprec andasucc) (econstr), we as-
sume thattaware ≤ lb(etprec) if the constraint is removed,
and taware ≤ min(lb(etprec), lb(stsucc)) otherwise (a
causal link between two activitiesai andaj is intended as a
temporal constraint betweenetai andstaj). Furthermore,
these bounds can be also used to set other parameters of
the different events: (5) for the width of the delay on ac-
tivity ai (edelay), we have that∆st ≤ ub(sti) − lb(sti),
(6) for the change of activity duration (ep), we have that
∆p ≤ ub(eti)− lb(sti)− pi, and (7) for the change of re-
source availability (eres), we have that0 ≤ ∆cap ≤ capj .

4.3 Evaluating benchmark instances

In order to design a complete testset generator, it is essen-
tial to introduce a set of metrics with the aim of having
measures to assess the difficulty of the sets of the gener-
ated events. In general, the same event may have enor-
mous consequences on one specific schedule and little or
no consequence at all on another solution. To overcome
this drawback we consider in the evaluation of the single
instance both the set of events and the problem on which
this events will be applied. The idea is to use proper met-
rics (see below) to evaluate the structure of a scheduling
problem as a set of unexpected eventsE = {e1, . . . en} is
introduced. For instance, let us consider a scheduling prob-
lem P ′ obtained by adding to the original problemP an

eventek; given a metricµ(), it is then possible to compare
the structures of the problemsP ′ andP by considering:

- the variationµ value:∆µ = |µ(P)− µ(P ′)|
- the speed of this variation, for instance:∆µ/∆t, with

∆t equal to the distance betweenek andek−1

It is worth remarking that for the second aspect it is funda-
mental how the events are spaced over the horizon: given
two events, the closer they are, the more critical the situ-
ation will be (note that the temporal distance between the
events does not influence the overall variation). This cor-
roborates the necessity to definetaware values which are
solution independent.

In the following paragraphs we describe scheduling met-
rics currently used to evaluate the benchmark instances. In
particular these metrics face with the two main aspects of
a scheduling problem: time and resource constraints.

Temporal metrics. The first metric we focus on quanti-
fies the effects of the precedence constraints added in the
plan of the tasks. To do this we start considering the notion
of order strength described in [8]:

OSP =
|P|

n(n− 1)/2
(1)

whereP denotes the set of precedence relations in the tran-
sitive closure of the precedence graph associated toP, in
other terms,|P| denotes the number of activity pairs that
are related. Thus, the lower the value of|P|, the more flex-
ible the problem.

It is worth noting that theOSP metric only gives a qual-
itative evaluation of the solution. In a problem like the
RCPSP/max it is necessary to integrate this measure with
another metric able to assess also the quantitative aspects
of the problem (or solution). A possible metric that satis-
fies this requirement is defined in [4]. It requires the pres-
ence of a fixed-time horizon for the termination of all the
activities. In order to compare two or more solutions we
bound a single partial order schedule to have a finite num-
ber of solutions; then the metric is defined as the average
width, relative to a given temporal horizonH, of the tem-
poral slack associated with each pair of activities(ai, aj):

fldtH =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (2)

whereslack(ai, aj) is the width of the allowed distance
interval between the end time of activityai and the start
time of activityaj . This metric characterizes thefluidity of
a solution, i.e., the ability to use flexibility to absorb tem-
poral variation in the execution of activities. Furthermore
it considers that a temporal variation concerning an activ-
ity is absorbed by the temporal flexibility of the solution
instead of generating deleterious domino effect (the higher
the value offldtH , the less the risk, i.e., the higher the
probability of localized changes).

6 Policella, Rasconi

Figure 3: A graph representation of the problem.

Resource metrics. In order to understand the bias pro-
duced by a set of events on the resource-related character-
istics of the scheduling problems, we employ another well-
known measure, namely the resource strength. Given the
resourcerk we denote withrk

min the maximum usage of
this resource by a single activity,rk

min = maxi=1..n reqik.
Also let rk

max denote the peak demand of resourcerk in
the earliest start schedule of the infinite capacity version of
the problem. The resource strength of resourcerk is thus
defined as:

RSk =
ck − rk

min

rk
max − rk

min

(3)

This metric takes into account the resource availability
level with respect to the task requirements. Our analysis
on the averageRS over the resource which are employed
in the scheduling problemP, RSP . Like for OSP , the
lowerRSk is, the less constrained the problem.

4.4 Example

To make the approach clear, we present an example of
benchmark instances for a scheduling problem of eight ac-
tivities (see Fig. 3), representing a multiple capacitated job
shop scheduling problem instance. Each activity is char-
acterized by a certain duration and requires one instance
of one of the two available resourcesr1 andr2. Each re-
source has a maximum capacityci = 2; more precisely,
oddly numbered activities require one instance ofr1 while
evenly numbered activities require one instance ofr2. All
the oddly numbered activities have a start-time of at least
3 (in Fig. 3 this fact is represented by the constraints, la-
beled with a value 3, between the source and the activ-
ities). The activity processing time vector is equals to
D = {d1, . . . , dn} = {4, 7, 4, 7, 3, 5, 3, 5}. Finally, the
problem is also defined by the following precedence con-
straintsa1 ≺ a2, a3 ≺ a4, a5 ≺ a6, anda7 ≺ a8 (i.e., the
evenly numbered activities can start only after the oddly
numbered activities have terminated). The following list
presents two possible exogenous events produced by our
benchmark generator:

{eventDelay a6 7 2}
{eventDuration a2 5 4}

The first event represents a delay related to the activitya6:
we have thatlb(st6) = 6 and therefore, a consistent value
for taware is generated (taware = 2). The second event
represents a change in the duration ofa2: the event will be
acknowledged attaware = 4 and the activity duration will
be augmented by 5 time units.

t 0 2 4
OSP 0.14 0.14 0.14
flex50 5.36 5.36 5.21
RSP 0.33 0.42 0.42

The table above shows the effects of the two events on
the scheduling problem with respect the three metrics de-
scribed in Sect. 4.3. We see howflexH and RSP are
able to catch the deteriorations produced by the two events
(OSP is not affected because the number of precedence
constraints in the problem has not changed and no new ac-
tivities have been added).

Figure 4 presents a graphical visualization of a pos-
sible execution of a schedule for the problem in Fig. 3
(we extracted the figures from the scheduling framework
OOSCAR [3].). Note that the vertical red line in each fig-
ure represents the current execution timetE . Figure 4(a)
shows a solution of the scheduling problem while Fig. 4(b)
shows the solution found by the re-scheduler after the first
event (t = 2): the blue arrow represents the delay which
affecteda6, while the red arrow represents the best action
found by the solver (i.e. anticipatinga2) with the double
aim of avoiding any conflict on resource usages and keep-
ing the schedule makespan to a minimum. To complete
the example, Fig. 4(c) shows the effects of the second pro-
duced event (t = 4): the duration of activitya2 is aug-
mented and the solver therefore opts to further delay ac-
tivity a6 because activitiesa2, a6, anda8, using the same
resource, cannot simultaneously overlap.

A slight modification to this example gives us the op-
portunity to illustrate the reason why choosing to produce
absolute values fortaware is the only viable option. Let
us consider the following event sequence, where alltaware

values are expressed in relative terms:

{eventDelay a6 7 st_6 - 4}
{eventDelay a2 5 st_2 - 5}

in this sequence, the first event will be fired attaware =
st6 − 4 = 2, producing the solution shown in Fig. 4(b);
from here, we know that the second event should be fired
at taware = st2 − 5 = 1, but this is clearly impossible,
astE is currently equal to 2 andtaware can at no time be
smaller thantE .

5 Ongoing work

Our long-term plan concerns the realization of an experi-
mental framework for scheduling problems (both static and
dynamic). This is considered fundamental to evaluate the

To appear inIntelligenza Artificiale, Italian Journal of Artificial Intelligence, Year II, number 3, 2005 7

(a) The initial schedule.

(b) The schedule after the first event.

(c) The schedule after the second event.

Figure 4: Graphical visualization of the execution of a schedule for the problem in Fig. 3.

integration of static and dynamic scheduling methodolo-
gies. At this stage we are working along two directions: the
implementation of the benchmark generator and the anal-
ysis of a portfolio of reactive scheduling techniques. Re-
garding the benchmark generator we are currently in a tun-
ing phase and we plan to make it available in a few months
(see our web-sitehttp://pst.istc.cnr.it). With regard to the
scheduling techniques, we are evaluating the integration
of predictive, flexible schedules together with localized re-
pairing methods.

Furthermore, in order to design a complete experimen-
tal framework, it is essential to introduce also a set of met-
rics to evaluate the validity of the different rescheduling
techniques by producing an assessment of the quality of
the solution according to various criteria. The “dynamic”
optimization criteria are in general different then those re-
lated to the static case, as schedule execution imposes the
presence of different requirements. For instance, an impor-

tant measure is represented by the schedulecontinuity(or
stability), which may informally be described as the close-
ness of the perturbed schedule to the schedule before the
occurrence of the disturb. In many cases it is in fact essen-
tial that any revised solution be as close as possible to the
previous consistent solution found by the scheduler.

6 Conclusions

In this work we analyzed the main characteristics of a re-
active scheduling problem with the aim of producing a
benchmark generator. This effort is justified by the ab-
sence of such benchmarks and by our conviction that an
experimental analysis of the execution of schedules is in-
valuable to assess the effectiveness of different approaches
to scheduling problems.

To this aim we proposed a benchmark based on the pro-
duction and firing of a variable number of events chosen

8 Policella, Rasconi

from a predetermined set, aimed at testing the effective-
ness of rescheduling algorithm as well as the robustness of
the initial schedule. In particular to guarantee the repro-
ducibility of the experiment we have introduced the con-
cept oftaware, that is the instant in which a given event is
detected. This allows to have instances that are indepen-
dent from the initial solution of the scheduling problem.

7 Acknowledgments

This work was supported by the Italian Ministry of Uni-
versity and Scientific Research (MIUR) within the project
“RoboCare: A Multi-Agent System with Intelligent Fixed
and Mobile Robotic Components”. The authors would like
to thank Amedeo Cesta for his valuable help.

References

[1] H. Aytug, M. A. Lawley, K. N. McKay, S. Mohan, and
R. M. Uzsoy. Executing production schedules in the
face of uncertainties: A review and some future di-
rections. European Journal of Operational Research,
165(1):86–110, 2005.

[2] M. Bartusch, R. H. Mohring, and F. J. Radermacher.
Scheduling project networks with resource constraints
and time windows. Annals of Operations Research,
16:201–240, 1988.

[3] A. Cesta, G. Cortellessa, A. Oddi, N. Policella, and
A. Susi. A Constraint-Based Architecture for Flexi-
ble Support to Activity Scheduling. InIn Proceedings
AI*IA 01, LNAI N. 2175, 2001.

[4] A. Cesta, A. Oddi, and S. F. Smith. Profile based Al-
gorithms to Solve Multi Capacited Metric Scheduling
Problems. InProceedings of AIPS-98, pages 214–223,
1998.

[5] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks.Artificial Intelligence, 49:61–95, 1991.

[6] E. L. Demeulemeester, B. Dobin, and W. Herroelen.
A random activity network generator.Operations Re-
search, 41:972–980, 1993.

[7] R. Kolish, A. Sprecher, and A. Drexl. Characteri-
zation and generation of a general class of resource-
constrained project scheduling problem.Management
Science, 41:1693–1703, 1995.

[8] A. A. Mastor. An Experimental and Comparative
Evaluation of Production Line Balancing Techniques.
Management Science, 16:728–746, 1970.

[9] C. Schwindt. Generation of Resource-Constrained
Project Scheduling Problems Subject to Temporal
Constraints. Technical report, WIOR-543, Universitat
Karlsruhe, Germany, November 1998.

Nicola Policella is a Postdoctoral fellow at
the ISTC-CNR. He received a Master degree
and a PhD in Computer Science Engineering
from the University of Rome “La Sapienza” in
2001 and 2005 respectively. In 2001, he was
awarded the AI*IA prize for the best Master
Thesis in AI. His current research interests in-
clude Scheduling with Uncertainty, Temporal
and Resources Reasoning, and Constraint Pro-
gramming.

Riccardo Rasconiis a PhD student in Informa-
tion and Communication Technologies at the
University of Genoa, a research fellow at the
ISTC-CNR, and a AI*IA member. His re-
search topics are focused on Reactive Schedul-
ing, Temporal and Resource Reasoning, and
Pervasive Computing.

