
Benchmark Problems for Oversubscribed Scheduling

Laura V. Barbulescu and Laurence A. Kramer and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{laurabar,lkramer,sfs}@cs.cmu.edu

Telephone: 01 (412) 268-5900, Fax: 01 (412) 268-5569

Abstract
When organizing a scheduling competition one important is-
sue is identifying the test problems for which the participating
teams should demonstrate the performance of their approach.
Ideally, the results of a competitive evaluation of different ap-
proaches should be useful to both scheduling researchers and
practitioners. To enable this, we believe that the process of
producing problem instances for the competition should fo-
cus on two main issues: 1) generating benchmark problems
that abstract features from real-world domains, while still
providing guidance to solving problem instances from these
domains and 2) choosing the real-world domain/domains to
be representative for the type of challenges human schedulers
are facing. The contribution of our paper is twofold. First,
we propose problems with resource oversubscription as good
candidates for the competition problems. Second, we present
our approach to generating problems by merging the main
common features of two similar real-world oversubscribed
applications.

Introduction
Most existent scheduling benchmark problem sets are ei-
ther synthetic, machine-scheduling problems, or are repre-
sentative of one specific real-world scheduling application.
On the other hand, many real-world scheduling applications
share various common features. Generalizing the common-
alities of a set of chosen domains when producing a bench-
mark set for a scheduling competition would make it possi-
ble to evaluate different approaches in a much broader con-
text than the usual empirical setup for a single application.
The results of the competition could then translate into pre-
scriptions of what works well given certain problem char-
acteristics. The main challenges of producing such a bench-
mark set are: 1) identifying domains that share common fea-
tures and could be modeled as a more abstract problem de-
scription 2) imposing on top of these common features the
main features particular to each domain (while ignoring the
less relevant domain-specific features) and 3) still being able
to find settings of the features that produce instances similar
to ones of the original domains.

In oversubscribed scheduling problems the resources
available can not accommodate all input tasks and there-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fore any solution will specify a subset of the tasks to be
assigned to resources. We believe that oversubscribed prob-
lems would be a good choice for a competition benchmark
set for three main reasons. First, oversubscribed problems
are typical in a number of important real-world domains:
telescope scheduling, satellite scheduling, tracking space
objects, scheduling the shuttle payload; such applications
have received increased interest in recent scheduling re-
search. Second, as opposed to classical scheduling, over-
subscribed scheduling poses additional challenges: identi-
fying the best subset of tasks to be assigned to the existing
resources is in itself a difficult optimization problem. Third,
many oversubscribed real-world applications share common
characteristics and are therefore amenable to being modeled
as a more general problem class; we present a working ex-
ample of how to generate benchmark problems based on two
rather similar oversubscribed scheduling applications.

An oversubscribed scheduling application, the manage-
ment of Earth observation satellites, has in fact been the ob-
ject of a scheduling competition: the ROADEF 2003 Chal-
lenge (French Society of Operations Research and Decision
Analisys 2003). While the application is challenging and
interesting in itself, the formulation of the objective func-
tion is rather specific to this domain: polygons are used to
model the surface to be observed by the satellite and a gain
associated with the partial acquisition of a polygon is de-
fined such that it favors the termination of the polygons as
opposed to dispersal of image acquisitions between poly-
gons. Given this optimization criterion, it is not clear how
the results of the competition would transfer to other similar
oversubscribed scheduling applications.

In recent research (Kramer, Barbulescu, & Smith 2007c;
2007a; 2007b), we have gained experience with generating
problems that draw their features from two oversubscribed
real-world scheduling applications which share similar char-
acteristics: the USAF Satellite Control Network (AFSCN)
scheduling problem (Barbulescu et al. 2006) and the USAF
Air Mobility Command (AMC) airlift scheduling problem
(Kramer & Smith 2005). Our work was motivated by the
fact that the best techniques for solving AMC scheduling
problems don’t perform well for AFSCN and similarly, the
best techniques for AFSCN do not perform as well for AMC
scheduling. We hypothesized that certain differences in the
problem characteristics for the two domains can account for

such algorithm performance discrepancies: While priority is
a hard constraint for AMC scheduling, there is no task pri-
ority specified in AFSCN scheduling; also there are differ-
ences in terms of resource capacity and temporal flexibility
in scheduling a task inside its time window for the two do-
mains. To test our hypotheses, we implemented a problem
generator capable of generating both AFSCN-like problems
and AMC-like problems, as well as problem instances that
share characteristics with both domains but span the range of
values for resource capacity or degree of temporal flexibility
for tasks.

The balance of this paper describes the commonalities of
the two oversubscribed scheduling domains as well as the
features that set them apart, then it presents the challenges of
generating representative instances for the two domains and
introduces our benchmark of 36 sets of problems, followed
by a summary of the lessons learned.

Generating Oversubscribed Scheduling
Problems

Most existing benchmark problem sets or problem genera-
tors for scheduling domains assume that either all tasks can
be assigned feasibly given problem constraints, or that the
particular constraints themselves, such as deadlines, are re-
laxable. Often the best solution to these classes of problems
involves minimization of makespan. In most real-world do-
mains, though, some of the problem constraints must be vio-
lated to achieve a “good” solution. This is true by definition
for oversubscribed scheduling problems, where for most in-
stances it is impossible to assign all tasks.

Many problem generators implemented for classical ma-
chine scheduling (e.g. flowshop, jobshop, project schedul-
ing) produce random problem instances (Taillard 1993). Ob-
viously this approach does not work well when generat-
ing instances for real-world applications; for example, a
study of flowshop scheduling has shown that performance
on standard benchmark problems did not generalize to per-
formance on problems with realistic structure (Watson et al.
1999). Designing a problem generator to produce problem
instances similar to the real data for a given application is a
difficult task in itself: even after careful consideration of the
real data, unexpected interactions of various parameter set-
tings could produce problems that are largely different from
the “real” ones.

Generating oversubscribed scheduling problem instances
poses additional challenges. Instances with an uncharacter-
istically low degree of oversubscription, or none at all, as
well as instances with a too high degree of oversubscription
as compared to the “real” ones are usually not desirable and
should probably be filtered as non-representative.

One possible way to preserve the characteristics of the
application is implementing a problem generator by “boot-
strapping” the real data, where the real instances are decon-
structed into reusable pieces and then the pieces are put back
together in a way that still makes sense; a small random
variation might also be applied to the actual numbers (En-
gelhardt et al. 2001; Kramer & Smith 2005). In this paper,
we use a form of this mechanism to produce AFSCN-like

problem instances.

Comparing Our Two Benchmark Domains:
AFSCN Scheduling versus AMC Scheduling

Our benchmark problems inherit the main characteristics
from two oversubscribed scheduling applications. In this
section we identify both the common characteristics of the
applications as well as their main differences.

In the AFSCN domain, input communication requests for
Earth orbiting satellites must be scheduled on a total of 16
antennas spread across 9 ground-based tracking stations. In
the AMC domain, aircraft capacity from 15 geographically
distributed air wings must be allocated to support an input
set of airlift missions.

Despite the application differences, these two domains
share a common core problem structure:
• A problem instance consists of n tasks. In AFSCN, the

tasks are communication requests; in AMC they are mis-
sion requests.

• Each task Ti, 1 ≤ i ≤ n, specifies a required processing
duration T Dur

i .1

• A set Res of resources are available for assignment to
tasks. Each resource r ∈ Res has capacity capr ≥ 1. The
resources are air wings for AMC and ground stations for
AFSCN. The capacity in AMC corresponds to the num-
ber of aircraft for that wing; in AFSCN it represents the
number of antennas present at the ground station.

• Each task Ti has an associated set Resi of feasible re-
sources, any of which can be assigned to carry out Ti.
Any given task Ti requires 1 unit of capacity (i.e., one air-
craft in AMC or one antenna in AFSCN) of the resource
r that is assigned to perform it.

• Each of the feasible alternative resources rj ∈ Resi spec-
ified for a task Ti defines a time window within which
the duration of the task needs to be allocated. This time
window corresponds to satellite visibility in AFSCN and
mission requirements for AMC.

• The basic objective is to minimize the number of unas-
signed tasks.
One principal difference between the domains is the issue

of task priority. In the AFSCN domain there is no explicit
notion of priority and all tasks are weighted equally. In the
AMC domain, alternatively, tasks (missions) are categorized
into one of five major priority classes, and task priorities
must be respected whenever scheduling tradeoffs are con-
sidered - i.e., it is not possible to substitute a lower priority
task for a higher priority task even if this choice enables ad-
ditional lower priority tasks to be inserted into the schedule.
This places an additional constraint on the basic objective of
minimizing the number of unassigned tasks.

Consideration of the benchmark problem sets that have
been published for each of these domains reveals a few ad-
ditional differences:

1Although, for AMC, the actual durations are resource-
dependent.

• The size of the AFSCN instances varies between 419 and
483 tasks, while the size of the AMC problem instances
is more than double (983 missions).

• Resource capacity for AFSCN varies between 1 and 3; for
AMC, it varies between 4 and 37.

• Degree of temporal flexibility (measured as task dura-
tion relative to the size of the resource time windows):
for AFSCN, approximately one half of the requests in a
given problem instance have no temporal flexibility (these
are communication requests for low altitude satellites);
for the AMC benchmark problems, temporal flexibility is
present for all tasks.

Benchmark Problem Sets
To produce a benchmark problem set common to the AF-
SCN and AMC domains, we start with five AFSCN prob-
lem instances, denoted R1 through R5 (Barbulescu et al.
2006). These problems are newer and somewhat more diffi-
cult to solve than previously studied AFSCN problems. Us-
ing these problem instances as a “seed” we build a set of
1,800 problem instances.2 Our design goals for this set are
as follows:

1. The generated problems should span the continuum of
characteristics of the AFSCN and AMC domain, some in-
stances being more AFSCN-like, some more AMC-like,
and some in between.

2. Very few (if any) of the instances should be solvable by a
greedy scheduler, i.e., the generated problems should be
oversubscribed, not trivially schedulable.

3. None of the problem instances should be outrageously
oversubscribed. For instance, a problem instance with
1,000 tasks should not end up with 700 unassignable tasks
after the first greedy scheduling pass.

4. The ranges of resource capacity and task slack should be
comparable to typical values in the two domains.

5. The problem instances should be grouped into problem
sets which exhibit common characteristics, and be large
enough in number to produce statistically significant re-
sults.
In order to attain these goals, we proceeded in the fol-

lowing way. We first generated 50 AFSCN-like problem
instances: ten new instances for each old one in the five-
problem seed. The new instances were generated by moving
each task’s time window later in time by a uniform random
choice over an hour time interval. All other factors were
held constant. In this way we ended up with 50 new AF-
SCN problem instances that are very similar to the original
ones. This 50-problem set, (1.1 in Table 1), can be consid-
ered in some sense a canonical AFSCN problem set. Given
different solution techniques, we expect these instances to
respond differently only inasmuch as instance R1 was dif-
ferent from R5 in the original domain data. To produce new

2This data can be downloaded from
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ozone/www/
DITOPS/publications/afscn-amc-benchmarks.zip.

Prob. Avg. Slack Capac. Init.Sched.Unassignables
Set Size df cf pf = false pf = true

1.1 443 0 0 34.1 71.2
1.2 886 0 3 127.7 195.6
1.3 1329 0 9 94.8 170.3
2.1 443 0.5 0 25.1 44.3
2.2 886 0.5 3 81.6 121.6
2.3 1329 0.5 9 56.12 106.6
3.1 443 0.5 3 7.4 15.7
3.2 886 0.5 6 27.3 48.9
3.3 1329 0.5 12 47 65.4
4.1 443 0.9 0 11.6 22.6
4.2 886 0.9 3 37.9 65.3
4.3 1329 0.9 9 32.3 45.4
5.1 443 0 5 4.04 13.5
5.2 886 0 8 34.9 69.0
5.3 1329 0 15 47.8 80.5
6.1 443 0.5 5 3.48 6.8
6.2 886 0.5 8 19.7 29.4
6.3 1329 0.5 15 36.8 44.7

Table 1: Description of the problem sets: the size is either
similar to the initial AFSCN problems (*.1 sets), doubled
(*.2 sets) or tripled (*.3 sets); df is the duration factor, cf
is the capacity factor, and pf the priority flag. The av-
erage number of unassignables in a greedy initial solution
computed for the 50 instances in each problem set is also
recorded.

problem sets from this set, in theory what we would like to
do is to vary just one factor, say problem size or resource ca-
pacity, to better understand the effect this has on the perfor-
mance of competing algorithms. In practice, though, it is not
always possible to vary only one factor independently and
come up with problem instances that conform to our design
goals. Increasing problem size without increasing resource
capacity can easily result in problems that are too oversub-
scribed. Likewise, increasing resource capacity without in-
creasing problem size tends to generate instances that aren’t
oversubscribed. Similar problems arise if we are not careful
when varying capacity and slack independently.

Given these considerations, starting with the AFSCN-like
50 instance problem set, we generated new problem sets by
varying one or more of the following factors: problem size
(number of tasks), resource capacity (the number of avail-
able units of capacity, not the number of resources), slack
(temporal flexibility), and task priority, as follows:
• Problem size: For our experiments, we decided to either

keep constant, double or triple the size of the initial AF-
SCN benchmark problems. When the problem size is kept
constant, new problems are produced by moving each
task’s time window later in time by a uniform random
choice over an hour time interval. When the size is dou-
bled (or tripled), two (or three) new tasks are generated
for each task in the original problem. The new tasks vary
from the initial one in terms of time window and possibly
duration.

• Slack (temporal flexibility): A duration factor df is used
to determine the durations for each new task. Given a task

Ti, 1 ≤ i ≤ n with an initial duration T Dur
i , the new dura-

tion is computed as: T Dur
i ∗ (1 − random(df, 0)), where

random(df, 0) produces a random number between df
and zero. For example, if df = 0.9, the new task dura-
tions can vary anywhere between the initial duration and
10% of the value of the initial duration.

• Resource capacity: Given a resource r with capacity capr

(in the initial AFSCN benchmark set), a capacity factor
cf is used to compute the new capacity of r as: capr +
random(cf, 0).

• Priority: A priority flag pf determines if task priorities are
present in the problem. When pf is true, task priorities are
uniformly sampled from 1..5 (following the five priority
classes in AMC).
For our experiments we generated 36 sets of problems,

with 50 instances each. 18 of the sets are produced with no
task priorities (pf = false), and the other 18 are identi-
cal but for the addition of task priorities (pf = true). The
parameters used to generate the sets are shown in Table 1:
the second column represents the average size of the prob-
lem instance, while the third and fourth columns represent
the value of df and cf respectively. Note that problem set
1.1 with pf = false contains the 50 AFSCN-like problem
instances, which are similar to the five original ones (same
size, slack and resource capacity, varying the time windows
for each task). As a measure of the level of oversubscription
in the instances for each set, we use a greedy constructor to
build an initial schedule for the 50 instances in each set and
record the average number of unassignables in columns five
and six.

Summary
Fundamental to the development of a scheduling competi-
tion is identification and construction of an appropriate set
of benchmark problems. Our intent in this paper has been
to make two general points with respect to this issue. First,
we believe that oversubscribed scheduling applications rep-
resent an important, practical class of problems and hence
should be considered for inclusion in any general scheduling
competition. Second, we believe that an effective approach
to generating test problems for a scheduling competition is
one that abstracts and consolidates common features from
multiple domains. Such an approach leads to problems that
capture the essence and structure of a set of related domains
without requiring or giving advantage to scheduling algo-
rithms that are engineered to solve specific applications.

Despite this advantage, the generation of test problems
that meet this goal remains a significant challenge. From
our experience, we can identify the following difficulties:
• Generating oversubscribed problem instances is in gen-

eral difficult since care must be taken not to produce
problems that are easily solvable (and thus not oversub-
scribed), or so oversubscribed as to be unrealistic. This
factor makes it difficult to control input variables inde-
pendently. For instance, if resource capacity is increased
without increasing number of tasks, the result can easily
be problem instances that are trivially solvable.

• Understanding what can be abstracted from a real-life
model to create a good benchmark set and still have it re-
semble the real-life domain is not always straightforward.
On the other hand, it is helpful to abstract away as many
non-essential domain features as possible so that it is not
too onerous for other research teams to replicate results.

• There are limits to the size/hardness of the problem in-
stances that should be generated. They should be large
and hard enough to demonstrate real-world features and
scalability, but not so hard as to be beyond computational
resources.

Acknowledgments
This research was supported in part by the USAF Air Mo-
bility Command under Contract # 7500007485 to Northrop
Grumman Corporation, by the Department of Defense Ad-
vance Research Projects Agency (DARPA) under Contract
FA8750-05-C-0033, and by the CMU Robotics Institute.
Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the USAF or DARPA.

References
Barbulescu, L.; Howe, A.; Whitley, L.; and Roberts, M.
2006. Understanding algorithm performance on an over-
subscribed scheduling application. JAIR 27:577–615.
Engelhardt, B.; Chien, S.; Barrett, A.; Willis, J.; and Wilk-
low, C. 2001. The DATA-CHASER and Citizen Explorer
benchmark problem sets. In European Conference on Plan-
ning.
French Society of Operations Research and Decision Anal-
isys. 2003. http://www.prism.uvsq.fr/∼vdc/ROADEF/
CHALLENGES/2003/.
Kramer, L. A., and Smith, S. F. 2005. The amc scheduling
problem: A description for reproducibility. Technical Re-
port CMU-RI-TR-05-75, Robotics Institute, Carnegie Mel-
lon University.
Kramer, L. A.; Barbulescu, L. V.; and Smith, S. F. 2007a.
Analyzing basic representation choices in oversubscribed
scheduling problems. In Proceedings of the 3rd Multidisci-
plinary International Scheduling Conference: Theory and
Applications (MISTA-07).
Kramer, L. A.; Barbulescu, L. V.; and Smith, S. F.
2007b. Searching alternate spaces to solve oversubscribed
scheduling problems. Submitted, Journal of Scheduling.
Kramer, L. A.; Barbulescu, L. V.; and Smith, S. F. 2007c.
Understanding performance tradeoffs in algorithms for
solving oversubscribed scheduling. In Proceedings of the
22nd Conference on Artificial Intelligence (AAAI07).
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operations Research 64:278–
285.
Watson, J.-P.; Barbulescu, L. V.; E., H. A.; and Whitley,
D. 1999. Algorithm performance and problem structure
for flow-shop scheduling. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI-99).

